МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ
"АЗОВСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА"

(ФГБНУ «АЗНИИРХ»)

СОВРЕМЕННЫЕ ВОПРОСЫ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ВОДНЫХ И НАЗЕМНЫХ ЭКОСИСТЕМ

МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ МОЛОДЫХ УЧЕНЫХ

> Г. РОСТОВ-НА-ДОНУ 26-29 ОКТЯБРЯ 2015 Г.

Поповичев В.Н., Ерёмин О.Ю., Бобко Н.И., Родионова Н.Ю., Богданова Т.А.

ФГБУН Институт морских биологических исследований им. А.О. Ковалевского, Севастополь popovichev@ukr.net

ПРОДУКЦИОННЫЕ И ГИДРОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОБ МОРСКОЙ ПРИБРЕЖНОЙ ВОДЫ И НЕКОТОРЫХ СОЛЁНЫХ ОЗЁР КРЫМА ПО РЕЗУЛЬТАТАМ СУХОПУТНОЙ ЭКСПЕДИЦИИ В АВГУСТЕ 2014 Г.

Хрестоматийно известно, что сероводород в Черном море — одно из самых уникальных свойств моря, а т.к. глубже 200 м в черноморской воде нет кислорода, то ни животные, ни растения там жить не могут. На глубинах примерно от 200 м до самого дна Черного моря живут только бактерии, выделяющие сероводород. И главные причины существования сероводородной зоны — это вертикальное расслоение черноморских вод и большой привнос реками биогенных веществ [6].

В Черном море, из-за его опреснения реками, существуют два слоя воды, которые слабо смешиваются друг с другом: поверхностный слой черноморской воды (толщиной около 100 м) преимущественно речного происхождения. Вместе с тем, в глубины моря поступает более солёная, а значит более тяжёлая, вода из Мраморного моря, притекающая по дну Босфорского пролива (нижнебосфорское течение) и опускающаяся вглубь Черного моря (солёность его придонных слоев достигает 30 %). Расслоение, т.е. стратификация черноморской воды по солёности, плотности и температуре, препятствует вертикальному перемешиванию моря и обогащению глубин кислородом. К тому же, вся развивающаяся морская жизнь (от одноклеточных водорослей до рыб и дельфинов) дышит - потребляет кислород, и когда живые организмы умирают, их останки становятся пищей для бактерий-сапротрофов, однако, при бактериальном разложении мёртвого органического вещества (гниении) также используется кислород. С глубиной, разложение начинает преобладать над процессами генерации живого вещества планктонными водорослями, а потребление кислорода при дыхании и гниении становится более интенсивным, чем его производство при фотосинтезе, и поэтому, чем глубже от поверхностного горизонта – тем меньше остаётся в воде кислорода. В афотической зоне моря, куда не проникает солнечный свет, под холодным промежуточным слоем (ниже 100 м) кислород уже не производится, а только потребляется; не проникает он сюда и за счёт перемешивания, т.к. этому препятствует стратификация вод [7].

В контексте вышеизложенного: увеличение антропогенного пресса на водосборной площади Черного моря и его прибрежной зоне приводит к его эвтрофикации и как следствие — способствует расширению его сероводородной зоны, однако, в какой мере негативное развитие этой зоны вызвано природными, а в какой антропогенными факторами — вопрос неоднозначный.

Для прогноза эволюции сероводородной зоны Черного моря надо учитывать множество динамических и зачастую взаимообусловленных факторов, отражающих его климатические, гидрологические и биогеохимические особенности, наряду с техногенным прессом. Теоретическое моделирование на ЭВМ и непосредственно натурные исследования указывают на восстановление сульфатов микроорганизмами как на основной источник пополнения сероводорода в Черном море, а очаги микробиологической сульфатредукции приурочены к местам поступления мёртвого органического вещества с прибрежных акваторий. Отсюда, главная причина расширения сероводородной зоны — эвтрофикация моря, повышение содержания в нём органических веществ, а т.к. основная доля их образуется в сравнительно узкой прибрежной зоне, именно её экосистема определяет содержание сероводорода в глубинах Чёрного моря [6].

В этой связи, проводимые нами исследования первичной продуктивности, как прибрежных вод Крыма, так и некоторых его внутренних водоёмов, в частности — солёных озёр, находятся в русле современной биогеохимической парадигмы и являются важным звеном экологического мониторинга.

Целью настоящей работы является представление данных и краткий анализ исследовательского материала, полученного в ходе 5-суточной сухопутной экспедиции по отбору проб поверхностной воды из морского прибрежья и из некоторых солёных озёр Крыма, проведённой нами в августе 2014 г.

Материал и методика

Для определения интенсивности процесса первичного продуцирования органического вещества (OB) биотическим компонентом природной взвеси (фитопланктоном) в пробах воды мы применяли радиоуглеродный метод «в модификации склянок», при этом уровень «чистой» первичной продукции (ПП, мгС ${\rm m}^{-3}$ сут $^{-1}$) рассчитывали по разности ассимилированной углекислоты, меченной ${}^{14}{\rm C}$, внесённой в «светлые» и «тёмные» склянки, с их последующим помещением на 1–суточную экспозицию в условия близкие in situ [1, 4].

Скорость продуцирования ОВ рассчитывали по формуле: $C_{_{\varphi}} = C_{_{\kappa}} \times r/R$, где $C_{_{\varphi}} (\text{мгС } \pi^{\text{-}1}) -$ величина фотосинтеза за время экспозиции; $C_{_{\kappa}} (\text{мгС } \pi^{\text{-}1}) -$ общее количество углерода во всех формах углекислоты

в воде; г (кБк π^{-1}) — радиоактивность, приобретённая взвесью за время экспозиции; R (кБк π^{-1}) — радиоактивность, внесённая в опытные склянки и измеренная при тех же условиях, что и г [4]. При расчёте ПП для морских прибрежных акваторий бралось значение $C_{\kappa} = 36$ мгС π^{-1} [3], а для озёр — $C_{\kappa} = 25$ мгС π^{-1} [4].

Концентрацию взвешенного вещества ($C_{\text{взв}}$, мг $_{\text{сух}}$ π^{-1}) в пробах воды определяли методом «мембранного фильтрования» [2], а гидрохимические характеристики проб воды определяли, руководствуясь соответствующими методическими рекомендациями [5].

Рассчитываемый из значений ПП и $C_{_{\rm B3B}}$ параметр $M_{_{\rm III}}/M_{_{\rm B3B}}$ (% сут $^{-1}$) – есть отношение массы новообразованного ОВ в процессе фотосинтеза за 1–суточную экспозицию и сырой массы взвеси, выраженных в одинаковых единицах (массовых или углеродных) и содержащихся в ед. объёма воды, и являющийся аналогом «классического» гидробиологического параметра (Р/В – продукция/биомасса), характеризующего эффективность процесса первичного продуцирования в воде. В данном случае, значения концентрации общей взвеси ($C_{_{\rm B3B}}$, мг $_{_{\rm сух}}$ л $^{-1}$), выраженные для сухой массы, пересчитывали на сырую массу, используя коэффициент пересчёта «сырой/сухой» для черноморской взвеси равный 12.5, и в которой содержание живого компонента (фитопланктона) оценивалось в 10% [1, 2].

Также, для количественной оценки интенсивности фотосинтеза фитопланктона в производстве OB рассчитывали параметр $T_{\text{обр}}$ (сут) — период «обращения» (или оборачиваемости) массы взвеси, — величина обратная значению $M_{\text{пп}}/M_{\text{взв}}$ и показывающая временной период (в сутках), за который количество OB, генерируемого фитопланктоном, сравняется по массе с сырой массой общей взвеси, содержащейся в ед. объёма воды.

Результаты и обсуждение

На рисунке 1 представлена фото-схема Крыма с указанием номеров и местоположения станций, где брались пробы воды на первично-продукционные и гидрохимические исследования, а в таблице 1 показаны номера, названия и координаты этих станций.

Основные биотические и абиотические характеристики проб воды, отобранных на указанных станциях, отражены таблице 2, из которой видно, что в августе-месяце, когда температура воды была 27 °C, максимальными значениями ПП характеризуются: солёное оз. Акташское (ПП = $1121.2 \text{ мгC M}^{-3} \text{ сут}^{-1}$, S = 61.6 %) и слабосолёное оз. Кызыл-Яр (ПП = $741.9 \text{ мгC M}^{-3} \text{ сут}^{-1}$, S = 2.4 %), а из морских вод — Чёрное море у Бакальской косы (ПП = $187.1 \text{ мгC M}^{-3} \text{ сут}^{-1}$) и у солёного озера Узунларское (ПП = $145.0 \text{ мгC M}^{-3} \text{ сут}^{-1}$), Азовское море (бухта Морской пехоты) у солёного озера Чокрак (ПП = $151.9 \text{ мгC M}^{-3} \text{ сут}^{-1}$) и вода в Керченском проливе (ПП = $168.1 \text{ мгC M}^{-3} \text{ сут}^{-1}$) у солёного оз. Тобечикское. Минимальными значениями ПП харак-

теризуются: вода в солёном оз. Джарылгач (ПП = $4.6 \text{ мгC м}^{-3} \text{ сут}^{-1}$) и черноморская вода в Феодосийском заливе у солёного озера Аджиголь (ПП = $5.4 \text{ мгC м}^{-3} \text{ сут}^{-1}$).

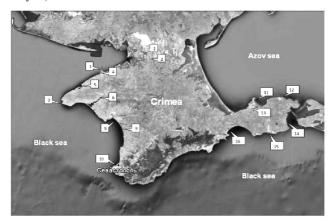


Рисунок 1. Фото-схема Крыма с указанием места и номера мониторинговых станций

Таблица 1 Номер, название и координаты станций по отбору проб воды во время сухопутной экспедиции по Крыму в августе 2014 г.

№	Название станции по месту отбора проб	Широта, N	Долгота, Е		
1	Солёное озеро Киятское	45°59'36.16''	33°57'36.45"		
2	Солёное оз. Кирлеутское	45°55'36.86"	34°02'38.55"		
3	Море – у солён. оз. Бакальское (Бакальская	45°47'07.90"	33°10'01.68"		
	коса)	43 47 07.90			
4	Солёное оз. Бакальское	45°45'31.28"	33°10'40.80"		
5	Солёное оз. Джарылгач	45°34'01.14"	32°51'43.80"		
6	Море – у мыса Тарханкут	45°21'06.15"	32°29'55.15"		
7	Море – в кутовой части оз. Донузлав	45°26'17.15"	33°11'46.12"		
8	Море – Евпатория (пляж)	45°10'38.60"	33°26'49.25"		
9	Слабосолёное оз. Кызыл-Яр	45°03'58.62"	33°37'46.80"		
10	Море – у Карантинной бухты Севастополя	44°36'56.26"	33°30'10.82"		
11	Море – у мыса Казантип	45°26'53.85"	35°50'46.46"		
12	Море – у солёного оз. Чокрак	45°28'44.30"	36°17'52.14"		
13	Затока у солёного оз. Акташское	45°20'44.10"	35°47'46.16"		
14	Море (Керченский пролив) – у солён. оз.	45°10'03.78"	36°24'34.09"		
	Тобечикское	75 10 05.76	30 24 34.09		
15	Море – у солёного оз. Узунларское	45°02'37.00"	36°06'34.96"		
16	Море – у солёного оз. Аджиголь	45°06'01.30"	35°27'09.64"		

Из таблицы 2 также видно, что максимальными концентрациями взвеси характеризовались воды солёных озёр: Киятское ($C_{_{\rm B3B}}=87.5~{\rm Mr}_{_{\rm сух}}$ π^{-1}), Кирлеутское ($C_{_{\rm B3B}}=56.9~{\rm Mr}_{_{\rm сух}}$ π^{-1}), Кызыл-Яр ($C_{_{\rm B3B}}=33.3~{\rm Mr}_{_{\rm сух}}$ π^{-1}) и Акташское ($C_{_{\rm B3B}}=60.0~{\rm Mr}_{_{\rm сух}}$ π^{-1}).

Таблица 2 Биотические и абиотические характеристики проб воды, отобранных во время сухопутной экспедиции по Крыму в августе 2014 г.

№	Дата отбора	S, ‰	рН	ПП, мгС/ м³/сут	$C_{_{ m B3B},}{ m M}\Gamma_{ m cyx}/{ m Л}$	M _{пп} / M _{взв,} %/	Т _{обр,}	PO ₄ , мкг/л
1	09-08-14	154.1	7.59	113.6	87.5	0.11	- 5	7.0
2	09-08-14	271.0	7.45	134.4	56.9	0.19		33.3
3	10-08-14	18.4	8.45	187.1	7.2	2.08	48.1	14.0
4	10-08-14	59.6	9.17	35.7	13.5	0.22		20.0
5	10-08-14	163.0	7.47	4.6	14.4	0.03		80.6
6	10-08-14	16.9	8.55	327.2	14.0	1.87	53.5	21.7
7	10-08-14	154.1	7.59	31.7	8.5	0.30		11.6
8	10-08-14	17.8	8.55	30.6	8.7	0.28		13.3
9	10-08-14	2.4	7.11	741.9	33.3	1.79	55.9	7.7
10	11-08-14	17.4	8.63	26.6	0.6	3.54	28.2	9.8
11	07-08-14	12.9	8.28	83.2	2.0	3.33	30.0	40.0
12	07-08-14	12.6	8.33	151.9	2.0	6.08	16.4	26.3
13	07-08-14	61.6	8.18	1121.2	60.0	1.50	66.7	12.3
14	08-08-14	17.1	8.40	168.1	4.7	2.86	35.0	31.5
15	08-08-14	17.2	8.43	145.0	1.3	8.92	11.2	15.1
16	09-08-14	17.4	8.47	5.4	0.7	0.62		9.8

Максимальной эффективностью в производстве ОВ характеризовались пробы азовскоморской воды, взятые вблизи солёного оз. Чокрак ($M_{\rm nn}/M_{\rm взв}=6.08\%$ сут $^{-1}$, $T_{\rm ofp}=16.4$ сут), и черноморской – у солёного оз. Узунларское ($M_{\rm nn}/M_{\rm взв}=8.92\%$ сут $^{-1}$, $T_{\rm ofp}=11.2$ сут), а минимальной – пробы воды из солёного оз. Киятское ($M_{\rm nn}/M_{\rm взв}=0.11\%$ сут $^{-1}$, $T_{\rm ofp}=909.1$ сут) и солёного оз. Джарылгач ($M_{\rm nn}/M_{\rm взв}=0.03\%$ сут $^{-1}$, $T_{\rm ofp}=3333.3$ сут). Однако, скоррелировать данные оценки, характеризующие процесс первичной биопродуктивности, с гидрохимическими параметрами, в частности, с рН и концентрацией фосфатов (PO_4 , мкг π^{-1}), не получилось. Поэтому, желательно привлечь к анализу ещё и гидрохимический комплекс азотных соединений, который полнее представит элементы минерального питания микрофитов.

Заключение

Полученные оценки биотических и абиотических параметров поверхностной воды из морского прибрежья и из некоторых солёных озёр Крыма,

являются формой экологического аудита, дающие представление о летней специфике биопродуцирования микрофитов в регионе.

Список литературы

- 1. Винберг Г.Г. Первичная продукция водоемов. Минск: АН БССР. 1960. 329 с.
- 2. Витюк Д.М. Взвешенное вещество и его биогенные компоненты. Киев: Наук. думка. 1983. 212 с.
- 3. Игнатьева О.Г. Состояние компонентов карбонатной системы вод Севастопольской бухты по данным экспедиционных исследований 2006–2007 гг. // Морск. экологич. журн. 2009. Т. VIII. № 2. С. 37–48.
- 4. Методическое пособие по определению первичной продукции органического вещества в водоёмах радиоуглеродным методом. Минск: Белгосуниверситет. 1960. 26 с.
- 5. Руководство по методам химического анализа морских вод / Под ред. С.Г. Орадовского. Л.: Гидрометеоиздат. 1977. 208 с.
- 6. Сероводород в Черном море [Электронный ресурс] // http://www.ecoteco.ru/index.php?id=870.
 - 7. Черное море [Электронный ресурс] // http://blacksea-education.ru/2-2.shtml.

Поповичев В.Н., Терещенко Н.Н., Стецюк А.П., Бобко Н.И., Родионова Н.Ю.

ФГБУН Институт морских биологических исследований им. А.О. Ковалевского, Севастополь popovichev@ukr.net

РЕЗУЛЬТАТЫ ИСПОЛЬЗОВАНИЯ РАДИОУГЛЕРОДНОГО МЕТОДА ПРИ ИССЛЕДОВАНИИ ВОЗДЕЙСТВИЯ РТУТИ НА ФОТОСИНТЕЗ МИКРО- И МАКРОФИТОВ СЕВАСТОПОЛЬСКИХ БУХТ

Одним из наиболее опасных загрязнителей морской среды является ртуть (Hg), относящаяся к высокотоксичным тяжелым металлам и обладающая способностью накапливаться в морских организмах до концентраций, превышающих предельно допустимые уровни, что чревато необратимыми последствиями [3].

В настоящей работе представлены результаты экспериментального изучения влияния ртути, как химического токсиканта, на фотосинтез микро- и макрофитов севастопольских бухт, проводимых с использованием радиоизотопа 14 С. Объектами наших экотоксикологических исследований служили: природная взвесь из поверхностного водного слоя изучаемых акваторий, включающая биотический компонент (микрофиты), генерирующий первичное органическое вещество (OB) водной среды [6], а также