



## ПОНТ ЭВКСИНСКИЙ – 2019

XI Всероссийская научно-практическая конференция молодых учёных по проблемам водных экосистем,

посвященная памяти д.б.н., проф. С. Б. Гулина

Материалы конференции

Севастополь, 23–27 сентября 2019 г.

Севастополь ФИЦ ИнБЮМ 2019

## CPABHEHUE CTAHДAPTHЫХ ПРОДУКТОВ СО СПЕКТРОРАДИОМЕТРОВ MODIS-AQUA/TERRA И VIIRS С РЕЗУЛЬТАТАМИ БИООПТИЧЕСКИХ ИЗМЕРЕНИЙ В ПРИБРЕЖНЫХ ВОДАХ СЕВАСТОПОЛЯ

Скороход Е.Ю.  $^1$ , Ефимова Т.В.  $^1$ , Моисеева Н.А.  $^1$ , Землянская Е.А.  $^1$ , Чурилова Т.Я.  $^1$ , Суслин В.В.  $^2$ 

<sup>1</sup>Институт морских биологических исследований им. А. О. Ковалевского РАН, г. Севастополь

<sup>2</sup>Морской гидрофизический институт РАН, г. Севастополь

Ключевые слова: концентрация хлорофилла-а, пигменты фитопланктона, растворенное окрашенное органическое вещество, неживое взвешенное вещество, дистанционное зондирование, Черное море

Дистанционное зондирование позволяет оперативно определять ряд стандартных продуктов в поверхностном слое моря. В основу спутникового алгоритма заложены особенности функционирования океанических вод 1-го типа [1], тогда как Черное море относится ко 2-му, в котором наблюдается высокое содержание окрашенного растворенного органического вещества в поверхностном слое [2]. Эти различия ограничивают возможность использования стандартных алгоритмов [3]. Для подтверждения корректности спутниковых продуктов необходимо произвести сравнение между спутниковыми продуктами и результатами *in situ* измерений этих параметров.

Для сравнения стандартных продуктов была осуществлена выборка данных со спектрорадиометров MODIS-Aqua~(MA), MODIS-Terra~(MT), VIIRS~(V) и результатов in~situ~ измерений в период с февраля 2009 по март 2019 гг. в прибрежных водах Севастополя в окрестности  $44^{\circ}37'26"\pm0.015^{\circ}N$  и  $33^{\circ}26'05"\pm0.009^{\circ}E$ .

Было произведено сравнение следующих стандартных продуктов:

- концентрация хлорофилла-a со спектрорадиометров ( $C_{a-s}$ ) и по  $in\ situ$  измерениям ( $C_{a-i}$ );
- показатель поглощения света пигментами фитопланктона на длине волны 443 нм со спектрорадиометров ( $a_{ph-s}(443)$ ) и по *in situ* измерениям ( $a_{ph-i}(443)$ );
- показатель поглощения света окрашенным растворенным органическим веществом  $(a_{CDOM}(443))$  в сумме с показателем поглощения света неживым взвешенным веществом  $(a_{NAP}(443))$  на длине волны 443 нм со спектрорадиометров  $(a_{CDM-S}(443))$  и по *in situ* измерениям  $(a_{CDM-i}(443))$ .

В ходе сравнения стандартных продуктов выявили ряд особенностей:

- Значения  $C_{a-s}$  относительно  $C_{a-i}$  завышены в декабре, сходят к занижению в январе и продолжают занижаться вплоть до начала июня. С июня по сентябрь снова отмечается завышение. В октябре и ноябре наблюдается очередное занижение  $C_{a-s}$  в сравнении с прямыми наблюдениями.
- Диапазоны изменчивости  $a_{ph-s}(443)$  на протяжении всего года значительно уже диапазона  $a_{ph-i}(443)$  и значения  $a_{ph-s}(443)$  практически всегда занижены в сравнении с величинами  $a_{ph-i}(443)$ .
- Ширина диапазона  $a_{CDM-S}(443)$  превышает  $a_{CDM-i}(443)$  в 3-11 раз. Исключение составляет диапазон со спектрорадиометра V в летний период, ширина которого уже in situ диапазона в 0,97 раз. Наибольшая разница в ширине диапазонов наблюдается осенью. Следует отметить, что ширина диапазона  $a_{CDM-S}(443)$  со спектрорадиометра V всегда ближе к  $a_{CDM-i}(443)$  чем данные других сканеров.
- Суммы  $a_{ph-s}(443)$  и  $a_{CDM-S}(443)$  при параллельных измерениях не совпадают между собой и отличны от аналогичной суммы *in situ*. Зависимости между  $C_{a-i}$  и  $a_{ph-s}(443)$ ,  $C_{a-s}$  и  $a_{ph-s}(443)$  при параллельных измерениях слабо выражены и различны между собой.

- При параллельных измерениях, в большинстве случаев, данные со спектрорадиометров помечены едиными флагами. Это говорит о том, что спектрорадиометры с разных спутников реагируют на внешние воздействия одинаковым образом и влияние на данные должно быть схожим.

Таким образом, при дистанционном зондировании сглаживаются сезонные изменения  $C_a$ , не отображая действительную годовую изменчивость. Неверно отображаются и другие стандартные продукты: показатель поглощения света пигментами фитопланктона практически всегда занижен, а показатель поглощения света окрашенным растворенным органическим веществом в сумме с показателем поглощения света неживым взвешенным веществом - завышен. Кроме того, не выявлено единых зависимостей между  $in\ situ\$ данными и данными со спектрорадиометров  $MODIS-Aqua,\ MODIS-Terra\$ u VIIRS.

Исследование показало, что тип закладываемых биооптических характеристик вод в алгоритм существенно влияет на результаты дистанционного зондирования. Для получения достоверных результатов оценки стандартных продуктов при дистанционном зондировании необходимо учитывать региональные особенности и алгоритмы.

Работа выполнена в рамках научно-исследовательской работы «Изучение пространственно-временной организации водных и сухопутных экосистем с целью развития системы оперативного мониторинга на основе данных дистанционного зондирования и ГИС-технологий» и проекта РФФИ №18-45-920070 «Развитие системы оперативного контроля экологического состояния прибрежных вод в районе Севастополя на основе данных дистанционного зондирования Земли из космоса: адаптация региональных алгоритмов оценки показателей продуктивности по спутниковым данным».

## Список литературы

- Morel A., Prieur L. Analysis of variations in ocean color // Limnology and Oceanography. 1977. Vol. 22, no. 4. P. 709–722. https://doi.org/10.4319/lo.1977.22.4.0709
- Kopelevich O. V., Burenkov V. I., Ershova S. V., Sheberstov S. V., Evdoshenko M. A. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas // Deep-Sea Research. Pt. II. Topical Studies in Oceanography. 2004. Vol. 51, iss. 10–11. P. 1063–1091. <a href="https://doi.org/10.1016/j.dsr2.2003.10.009">https://doi.org/10.1016/j.dsr2.2003.10.009</a>
- 3. Чурилова Т. Я., Суслин В. В., Кривенко О. В., Ефимова Т. В., Моисеева Н. А. Спектральный подход к оценке скорости фотосинтеза фитопланктона в Черном море по спутниковой информации: методологические аспекты развития региональной модели // Журнал Сибирского федерального университета. Серия: Биология. 2016. Т. 9, № 4. С. 367–384. 10.17516/1997-1389-2016-9-4-367-38

## МИКРОВОДОРОСЛЬ DUNALIELLA TERTIOLECTA КАК ТЕСТ-ОБЪЕКТ ДЛЯ ОПЕРАТИВНОГО БИОТЕСТИРОВАНИЯ ВЫСОКОМИНЕРАЛИЗОВАННЫХ ВОД

Стравинскене Е.С., Григорьев Ю.С.

Сибирский федеральный университет, г. Красноярск

Ключевые слова: биотестирование, морские водоросли, Dunaliella tertiolecta

Биологические методы оценки качества сред, в том числе биотестирование, активно применяются в настоящее время для проведения экологического мониторинга. Среди