

ПОНТ ЭВКСИНСКИЙ – 2021

XII Всероссийская научно-практическая конференция молодых учёных с международным участием по проблемам водных экосистем, посвященная 150-летию Севастопольской биологической станции — ФИЦ «Институт биологии южных морей имени А. О. Ковалевского РАН»

Материалы конференции

Севастополь, 20–24 сентября 2021 г.

Севастополь ФИЦ ИнБЮМ 2021 региона, так и для Черноморского, второй представлен только в Чёрном море. Зависимость гаплотипов от рыб-хозяев не наблюдается.

Было предложено две гипотезы, объясняющие такую сильную дивергенцию. Первая предполагает, что эти две клады стоит рассматривать как один вид, который в силу изоляции бассейнов, а также особенностей оседлой жизни хозяев, имеет сложную генетическую внутривидовую структуру. Вторая гипотеза предполагает, что это криптические виды. В пользу этого предположения свидетельствуют исследования [2,3], где было показано, что для гиродактилидов генетическая изменчивость в 1% уже позволяет говорить о новом виде. Поэтому наиболее распространенная особь из Черного и Средиземного морей была описана как Gyrodactylus gerasevi n. sp., тогда как генетический кластер, объединяющий только особей из двух районов Крыма, был признан G. sphinx. Оба вида относятся к G. orecchiae—species group.

Работа выполнена в рамках темы № 121030100028-0 гос. задания ФИЦ ИнБЮМ.

Список литературы

- 1. Dmitrieva E., Piras M.C., Garippa G., Merella P. New host and locality records for Gyrodactylus Sphinx (Platyhelmintes: Monogenea) // Современные проблемы теоретической и морской паразитологии : сборник научных статей / под ред.: К. В. Галактионова, А. В. Гаевской. Севастополь : Изд-ль Бондаренко Н. Ю., 2016. С. 139—142.
- 2. Huyse T., Houdt J. V., Volckaert F. A. M. Paleoclimatic history and vicariant speciation in the "sand goby" group // Molecular Phylogenetics and Evolution. 2004. Vol. 32, iss. 1. P. 324–336. https://doi.org/10.1016/j.ympev.2003.11.007
- 3. Zietara M.S., Lumme J. The crossroads of molecular, typological and biological species concepts: two new species of *Gyrodactylus* Nordmann, 1832 (Monogenea: Gyrodactylidae) // Systematic Parasitology. 2003. Vol. 55. P. 39–52. https://doi.org/10.1023/A:1023938415148

МОРФОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ ГЕМОЦИТОВ ANADARA KAGOSHIMENSIS (TOKUNAGA, 1906) ПРИ ГИПЕРОСМОТИЧЕСКОМ СТРЕССЕ

Рычкова В. Н., Кухарева Т. А., Кладченко Е. С., Андреева А. Ю.

ФИЦ «Институт биологии южных морей им. А.О. Ковалевского РАН», г. Севастополь

Ключевые слова: гемоциты, гиперосмотический стресс, морфометрия, Anadara kagoshimensis

Anadara kagoshimensis — это моллюск-вселенец в Черноморском регионе, который естественным образом распространен по всей территории Индийского и Тихого океанов. Функциональное состояние гемоцитов у двустворок семейства Arcidae исследовано в основном у океанических видов, устойчивых к высокой солености. Известно, что анадара толерантна к гиперсоленности, так при солености около 30 % моллюск показавает высокую скорость роста молоди и нерестовую активность. При увеличении солености и температуры отмечают у Anadara trapezia

снижение общей антиоксидантной способности, а у *Anadara granosa* — увеличение скорости инфильтрации и потребления кислорода. Но функциональное состояние гемоцитов анадары при гиперосмотическом стрессе никогда не исследовалось у черноморских моллюсков, которые привыкли к среде с пониженной соленостью.

Цель настоящей работы — исследовать в условиях эксперимента *in vivo* влияние гиперосмотической нагрузки на морфофункциональные характеристики клеток гемолимфы у двустворчатого моллюска-вселенца *A. kagoshimensis*.

Особей *А. kagoshimensis* собирали в июле 2020 года в прибрежной акватории г. Севастополь. Исследовано 30 экземпляров массой 17,6 \pm 1.9 г и высотой створки 30,5 \pm 1,0 мм. Для адаптации к лабораторным условиям моллюски находились в течение недели в емкостях с проточной морской водой из расчета 3 – 5 литра на особь (содержание кислорода – 6,77 мг/л; соленость 19,6 ‰). Контрольная группа содержалась при солености 19,6 ‰. Увеличение солености (до 35 ‰ и 45 ‰) осуществлялось путем добавления соли (the Red sea salt, France) со скоростью 0,8 \pm 0,2 ррт в час. Для удаления метаболитов вода в аквариумах менялась ежедневно с сохранением величин соленостей. Моллюсков кормили смесью микроводорослей.

Гемолимфу для анализа отбирали стерильным шприцом из экстрапаллиальной полости, затем трижды отмывали в морской воде в течение 5 минут (300g) и фильтровали через фильтр с диаметром ячейки 20 мкм. После отмывки одна часть концентрата клеток использовалась для приготовления мазков, а другая (50 мкл) – для измерения осмолярности на осмометре Astori OsmoSpecial 1. Окраска мазков проводилась по комбинированному методу Паппенгейма. Мазки анализировались при помощи светового микроскопа (Biomed PR-2 Lum), оборудованного камерой (Levenhuk C NG Series). В программе ImageJ 1.44 р по фотографиям измерялись большой и малый диаметры клеток (без учета псевдоподий) и их ядер. Для расчета площади поверхности $(\bar{S_c})$ и объема (V_c) эритроцита использовались формулы, представленные в работе (Houchin, 1958). Толщина определялась по уравнению, предложенному Чижевским (Чижевский, 1959). Используя формулы объема и площади эллипсоида вращения (Ташкэ, 1980), были рассчитаны данные показатели для ядер эритроцитов. На основании полученных значений были определены удельные поверхности эритроцитов и их ядер. На каждом мазке подсчитывалось 1000 клеток.

Достоверность различий оценивали при помощи U-критерия Манна — Уитни. Результаты представлены в виде $\overline{x} \pm SE$.

На препаратах гемолимфы анадары идентифицировано 2 типа клеток: эритроциты и амебоциты; наиболее распространенным из которых был первый. Эритроциты представляли собой крупные клетки, большая и малая оси которых были $16,15\pm0,11$ мкм и $13,33\pm0,08$ мкм, соответственно. Цитоплазма имела светлые оттенки, в ней наблюдалось большое число базофильных гранулярных включений, количество которых колебалось от 14 до 30 единиц. Клетки были округлой формы (величина индекса C_1/C_2 составляла $1,222\pm0,007$) с небольшим ацентричным ядром, обладающим плотной структурой. Размеры ядра составляли 4,95±0,03 мкм и 3,68±0,03 мкм. Содержимое ядра компактное с высоко концентрированным хроматином, цвет резко базофильный, что свидетельствует низкой функциональной активности данной структуры. Также это подтверждает пониженное значение ядерно-плазматического отношения 0,085±0,001.

Гиперосмотическая нагрузка сопровождалась изменением линейных параметров эритроцитов и их ядер. Большая ось эритроцитов при 35 ‰ уменьшилась на 4 % (p<0,05), а при дальнейшем увеличении солёности до 45 ‰ она, наоборот, возросла на 10 % (p<0,05). Что касается малой оси клетки, то при 35 ‰ ее размер оставался на уровне контрольных значений (13,40±0,11 мкм), а при 45 ‰ – увеличился на 9 %

(p<0,05). Такие же тенденции отмечались и для размерных характеристик ядра эритроцита при изменении солености.

В условиях гиперосмотического стресса у анадары фиксировались изменения объемных характеристик клеток и их ядер. Так при 35 ‰ объем клетки снизился на 6 ‰ (p<0,05), а объем ядра оставался на уровне контрольных значений ($36,25\pm0,652$ мкм³), а при 45 ‰ отмечалось увеличение объемов этих двух структур на 23 % (p<0,05) для гемоцитов и на 35 % (p<0,05) для их ядер. Что касается ядерноплазматического отношения, то его рост отмечался при 45 ‰ на 8 % (p<0,05).

Осмолярность гемолимфы анадары ($493,42\pm4,54$ мОсм·кг⁻¹) соответствовала осмолярности морской воды (470 мОсм·кг⁻¹) и увеличивалась постепенно при гиперосмотических условиях. В ходе эксперимента значительная разница между уровнями осмолярности морской воды и гемолимфы не отмечалась. Осмолярность гемолимфы анадары, акклиматизированной к 35 ‰, составляла $1188,51\pm3,48$ мОсм·кг⁻¹, в то время как осмолярность морской воды 1202 мОсм·кг⁻¹. При дальнейшем увеличении солености до 45 ‰ у моллюсков значения осмолярности гемолимфы находились в пределах от 1294 до 1314 мОсм·кг⁻¹, а осмолярность морской воды, соленость которой была 45 ‰, была 1300 мОсм·кг⁻¹.

Наиболее выраженными изменениями при гиперосмотическом стрессе были увеличение линейных и объёмных характеристик эритроцитов анадары. Это может свидетельствовать о том, что у гемоцитов вероятно имеется реакция регуляторного увеличения объема в условиях гиперосмотической нагрузки.

Работа выполнена в рамках государственного задания ФИЦ ИнБЮМ по Теме № 0556-2021-0003 «Функциональные, метаболические и токсикологические аспекты существования гидробионтов и их популяций в биотопах с различным физико-химическим режимом».

Список литературы:

- 1. Ташкэ К. Введение в количественную цито-гистологическую морфологию. Бухарест: Изд-во Академии Респ. Румынии, 1980. 291 с.
- 2. Чижевский А.Л. Структурный анализ движущейся крови. М.: Изд-во АН СССР, 1959.-474 с.
- 3. *Houchin D.N., Munn J.I., Parnell B.L.* A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area // Blood. 1958. 13. P. 1185-1191.

СООБЩЕСТВА ФИТОФИЛЬНОГО ЗООПЛАНКТОНА Р. ПЕРЬИ (ЯРОСЛАВСКАЯ ОБЛАСТЬ)

Сиротин А. Л.

ФГБОУ Костромской государственный университет, г. Кострома

Ключевые слова: фитофильный зоопланктон, макрофиты, р. Перья, биотоп

Организмы зоопланктона имеют важнейшее значение в функционировании гидроценозов. Для лотических экосистем наибольшее влияние сообщества гидробионтов оказывает фитофильный зоопланктон, зоопланктон плёсов, стариц и других рефугиумов с замедленным течением. Вместе с тем в современной литературе недостаточно сведений о структуре и функционировании сообществ фитофильного зоопланктона [1, 2].

Река Перья относится к Верхневолжскому бассейновому округу, протекает в Любимском районе Ярославской области и впадает в р. Кострому – приток р. Волги.