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Fisheries management is evolving from the conservation of individual living resources 
to conservation of entire aquatic ecosystems. Maximum sustainable harvest strategies 
require significant indicators to monitor the status of the ecosystems and their living 
components and thus to safeguard diversity, stock productivity and food availability. 
The present book compiles the state of the art in research of fish condition, ranging 
from basic scientific biochemical and physiological aspects to applied ecological 
aspects such as multiple exploitation strategies. There are prominent examples where 
fish condition has been proven to provide useful indicators for representing resource 
status and production driven by mortality, recruitment and growth, while the required 
data acquisition and assessment of fish condition were reasonably practicable. Given 
these facts, growing emphasis will be placed on assessments of fish condition of 
exploited stocks towards an applied standard monitoring procedure, in particular as 
regards the implication of varying fish condition on recruitment variation to improve 
fisheries management advice and measures.

Dr Hans-Joachim Rätz
European Commission, Joint Research Centre, Institute for the Protection and Security of 
the Citizen, Italy and Johann Heinrich von Thünen-Institut, Federal Research Institute for 
Rural Areas, Forestry and Fisheries, Institute for Sea Fisheries, Germany

Fish condition is often used as an indicator of the general well-being of the population in 
stock assessment. Condition also has an important impact on stock status through its 
influence on processes such as maturity at age and size. Yet, despite this importance there is 
still much to be learned about factors affecting condition and how decisions about energy 
allocation, including to the components of condition, are made. Condition and Health 
Indicators of Exploited Marine Fishes is an important contribution to this field. It covers all 
aspects from a description of the measures of condition, to physiology and biochemistry; the 
underlying biological mechanisms, to environmental factors affecting condition, and finally 
to the use of condition indicators in stock assessment. This broad coverage will aid 
researchers in their thinking about how condition is determined and what changes in 
condition mean for individuals and populations. Bringing all of these aspects together in one 
volume makes this book a very valuable reference tool.

Dr Joanne Morgan
Northwest Atlantic Fisheries Centre, Fisheries & Oceans Canada, Canada

Understanding the causes and consequences of variability in condition, or health, of indi-
viduals is of intrinsic interest to all ecologists. Fish have made a disproportionately large 
contribution to our understanding of how variation in the condition of individuals affects 
vital rates related to reproduction and mortality. The large literature on the physiological 
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Foreword  ix

basis of variation in condition was well covered in the book by Shulman and Love (1999). 
Since then there has been huge growth in our knowledge of how condition relates to the 
physiology, biology, and ecology of fish and its relevance to the management of commercial 
species. We also understand better the problems inherent in the measurement of condition. 
This new work synthesizes these different aspects, making a useful companion volume to 
the earlier work. By highlighting applications of the information to contemporary issues, 
including climate change and aquaculture, the book makes the important point that accu-
rate measurements of condition are central to any investigation into fish population 
dynamics.

Dr. Tara Marshall
University of Aberdeen, Scotland, United Kingdom

This book is very informative and valuable; it is organized into seven chapters, in which 
detailed descriptions of the most important measures of fish condition (structural, meta-
bolic and functional) are presented. Methods for measuring and use of these indices are 
discussed, including examination of their merits and demerits. Selected chapters provide 
clear applied recommendations. Since the earlier publication of The Biochemical Ecology 
of Marine Fishes by Shulman and Love, new devices and methods have appeared. 
Numerous data have been collected that needed to be systematized, understood and inter-
preted properly. Moreover, the conviction has grown of the importance of condition 
indices from an ecological and fisheries perspective. Use of condition indices seems to 
have become more frequent, especially in new fields like analysis of population status, 
stock preservation, and understanding stock–recruitment relationships. The book mainly 
focuses on wild fish and presents a balanced review of worldwide information on the 
condition of marine exploited fish with broad geographic/ecological range including dif-
ferent life stages of species. It is truly an international example of a review, in which dif-
ferent literature sources (including Russian, Ukrainian, Scottish and Spanish sources that 
existed as a “grey literature”) have been assembled for a broader international audience. 
The authors, well known for their excellent research, have provided a substantial and 
undeniable contribution to fish condition studies. The book should certainly be a “desktop” 
book for many fishery scientist/ecologists as well as for students and all who are inter-
ested in marine life research.

Dr Natalia A. Yaragina
Knipovich Polar Research Institute of Marine Fisheries and Oceanography, Russia

For over a century, condition indices have been used to assess the health of fish. Today, with 
the development of new indices (mainly physiological and biochemical), they are increas-
ingly used in fishery science and ecotoxicology. They are used to determine fish condition 
at different stages of ontogenesis, from larval to juvenile and adult phases, and to better 
understand the influence of the environment on population dynamics. In recent years, 
condition indices appear as relevant and essential indicators for analyzing the effects of 
environmental and human pressures on fish and for measuring the quality of the environ-
ment in which they live. The seven chapters in this book provide, for the first time, a detailed 
and complete analysis of the diversity of the current methods used for analyzing fish 
condition, providing cutting-edge examples of various applications and recent advances. In 
light of increasing environmental change and pressure in aquatic ecosystems, this book 
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improves knowledge on fish condition indices and their applications to fisheries and 
environmental sciences. It is an essential reference for students, researchers and fishery 
managers interested in fishery topics.

Professor Rachid Amara
Université du Littoral Côte d’Opale, UMR LOG 8187 CNRS, France

I am glad to comment on this book on the condition and health indicators of exploited 
marine fishes. Condition and health indicators are a diverse range of techniques widely used 
in fish biology and fisheries. The authors are to be applauded for providing an updated 
review on this topic in a single volume and from a variety of perspectives. We live in a world 
with an ever-expanding literature, where it is difficult to keep up to date, and where syn-
thesis and critical reviews are more needed than ever. The authors provide a synthesis rather 
than a critical review but numerous aspects of the book are to be commended: the range of 
condition indicators reviewed, the inclusion of applied recommendations and emphasis of 
important points, and the diversity of facets treated in relation to condition and health 
indicators. One can only hope that the book will contribute to further understanding of fish 
biology and to more sustainable fisheries.

Dr Emili García-Berthou
University of Girona, Spain

Evaluation of fish health or well-being although central for the determination of the produc-
tivity of individuals and populations does not receive all the attention it should. This situation 
is surprising given the availability of a number of reliable indices of fish condition that are 
easily measured. The links between fish condition indicators and life history attributes like 
growth and reproductive potential and the impact of the environment on these life history 
traits give the possibility of using condition indices as integrators of physiological, biological 
and environmental effects on fish populations. Simple conditions indices like Fulton’s K 
might prove to be most valuable in using time series of standard and largely available 
morphometric measurements like length and weight or limited information from data-poor 
stocks to monitor variations in fish stocks productivity. However, an essential and necessary 
step before using any conditions indices is to examine advantages, disadvantages, and 
limitations associated with selected indices as well as a validation of these indices as proxies 
of fish health status. The present book extensively covers all these aspects related to the 
measurement, significance and usefulness of condition indicators to study fish populations 
in their natural environment. It represents a significant reference for fisheries biologists 
interested in measuring fish health status and productivity.

Dr. Yvan Lambert
Institut Maurice-Lamontagne, Fisheries and Oceans Canada



In fish ecology, condition indicators have great significance for revealing the regularities 
and features of adaptations of fish to the environment and are a central component in under-
standing the history, behavior, and productivity of species and populations as well as their 
role in ecosystem functioning. Furthermore, condition indicators play a significant role in 
fishery science, where they can contribute to fishing management, as well as in aquaculture 
and stock preservation. The condition indicators that this book deals with are derived from 
fundamental biological science, and this is the basis for their main practical use, i.e., in 
fishery science. The book also combines indicators of energy features of fish with structural 
indicators because both are closely related to each other.

Condition indicators are closely connected with the health of individuals, stocks and pop-
ulations. Fish health underlies the degree of general well-being and constitutes a significant 
component of condition. Health status includes many structural and energy characteristics 
that may be defined by morphological, physiological, and biochemical parameters. The 
dynamics of these structural and energy components constitute a key attribute for under-
standing biological, ecological, functional and metabolic features, and health in general. 
Sensu stricto, condition indicators measure the magnitude of stored energy reserves in fish, 
and therefore partly define the health status of an individual. These energy stores, which can 
be evaluated using several methods, can have large consequences for population success. 
Low energy reserves may lower the chances of survival, leading to an increase in natural 
mortality. Starvation due to exhaustion of energy reserves, particularly during the non-feeding 
and reproductive periods, weakens fish and renders them more susceptible to predation and 
fishery, diseases, and a variety of environmental stressors. Inadequate reserves have been 
implicated in the reduced reproductive potential of several fish species through reduced 
fecundity and quality of eggs and larvae or delayed maturation. Condition not only depends 
on fish physiological status but also on the environmental and anthropogenic circumstances 
experienced during some previous period. In this book we emphasize the evaluation of 
“normal” fish condition, i.e., those values at which all processes occur and provide fish with 
the ability to lead a successful life. Although in some chapters we consider divergences from 
this normal condition in connection with infections and toxic substances, these are not the 
main topics of our book.

The condition of fish may help to evaluate not only the well-being of fish stocks but can 
be also used as a broad indicator of marine environmental health. This is because a reduction 
in fish energy reserves does not only affect their own population success but may impact as 
well on the reproductive output of top predators, such as birds and mammals. Finally, fish 
condition can be used as a marker of habitat quality (identification of essential fish habitats, 
evaluation of habitat protection, etc.).

Although it is increasingly clear that fish condition indicators have important biological 
and ecological links with the productivity of fish stocks and the quality of their habitats, at 
present very few marine fish stocks and habitats are managed in a way that takes fish 
condition into consideration. At present most fish stocks are assessed using standard 
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procedures (VPAS, XSA, etc.) and evaluation of the quality of marine habitats, such as the 
identification of essential fish habitats (EFHs) or the evaluation of “reserve” effects (i.e., 
effects of habitat protection on fishery resources through the establishment of marine 
protected areas), rarely takes into account the condition of fish. Furthermore, analysis of the 
impact of environmental factors (including climate change) as well as anthropogenic factors 
(e.g. fisheries, pollution) usually disregards the condition of fish. In all these analyses, 
carried out within the framework of fisheries science, the variables used are commonly a 
measurement of population size (abundance, biomass, landings, etc.) and demographic 
traits (e.g., growth and reproductive potential), whereas fish condition is often not 
considered.

In this book the basic principles and methods that are central to any study of fish condition 
from a fisheries perspective are outlined and discussed, using concrete examples from the 
published literature. This book is intended as an introduction to the study of fish condition 
that will assist advanced undergraduate and postgraduate students, as well as researchers in 
the main fisheries topics (biology, ecology and stock assessment) and fishery managers. The 
book focuses on wild fish rather than on farmed fish as the latter show specific condition 
characteristics as a consequence of higher food supply, different diet and high fish densities, 
among other factors. The book does not pretend to be a specialized publication on fish 
physiology for researchers, neither a seafood chemistry book for aquaculture or fish 
processing companies. The book recompiles and reviews worldwide information on the 
condition of exploited marine fish from an ecological and fisheries perspective. Therefore, 
it concentrates on those condition indicators that require a level of cost and time that is 
acceptable in practical situations during fisheries surveys and studies, and that best represent 
the amount of energy stored within individual fish. We are well aware that the condition 
indicators described in the book omit a number of indicators that can be very important in 
describing fish health, but whose analysis is excessively costly, technically complicated and 
time-consuming, rendering them impractical for use in fisheries science. Although we are 
mindful that the number of studies on the condition of marine fish inhabiting the Atlantic 
and the Pacific is much greater than those from other oceans and seas, and that the number 
of studies dealing with the condition of particular taxa (e.g., gadoids and clupeoids) far 
exceeds the number of studies in other taxa, we attempt here to undertake a broader 
geographic range that consider as many marine species as possible. Thus, far from consider
ing all studies on fish condition, we have selected examples from different seas and oceans 
around the world, and consider different life stages (from larvae to adults) from a diverse 
range of species (demersal and pelagic).

In this book we have reassessed old information on the condition of fish that was published 
as “grey literature” or in languages other than English (e.g., Russian), and therefore this 
book brings to the international scientific audience valuable historic and updated information 
about condition of fish that would otherwise stay inaccessible to researchers. In particular, 
we have gathered together the great work carried out by Russian, Ukrainian, and Scottish 
marine and fisheries biologists during the last century in the field. The renaissance of fish 
condition studies is a worldwide phenomenon that spans marine science in the oceans and 
seas around the world, and this will continue in the future as applications of these indices are 
being successfully tested in different domains that are important for society such as fisheries 
and aquaculture.

Although there is quite a large literature on the condition of freshwater fish (condition 
indicators are widely used in assessing their health), this book concentrates nearly exclusively 
on marine fish. We refer to freshwater fish only in a few examples to support particularly 
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important ideas. Compared with freshwater ecosystems, the analysis of fish condition in 
marine ecosystems has been largely overlooked and this book attempts to fill this gap by 
combining old literature with recent advances in this field. Given the move towards the 
incorporation of greater biological and ecological information into fisheries management, 
we hope that this book contributes to the ecosystem-based fisheries management approach.

In this book, we have not only described the potential abilities of condition indicators but 
also provide examples showing the use of these indicators in solving practical problems in 
fish and fisheries ecology. This book does not consider in detail aquaculture problems, 
because it is mainly intended for marine ecologists and fisheries biologists.

Key aspects of this book regarding physiological and biochemical indicators are derived 
from methodologies and examples given in The Biochemical Ecology of Marine Fishes 
(Shulman & Love, 1999). It is necessary here to acknowledge the excellent work carried out 
by Dr R. Malcolm Love from Scotland on the physiological and biochemical condition of 
marine fish, and his death was a great sorrow for all his colleagues. He made a valuable 
contribution to the present book, and thus he is included as a full coauthor. We hope that this 
book increases our knowledge of fish ecological morphology, physiology and biochemistry 
and that it will be useful for scientists studying natural populations and stocks in their natural 
environment, including fisheries biologists and managers.

Josep Lloret, Georgiy Shulman  
and R. Malcolm Love
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1  Description of condition indicators

Summary: Biologists have developed a wide range of morphological, biochemical and 
physiological metrics to assess fish condition. This chapter introduces all these indicators and 
analyzes the simple methods and criteria used to assess the condition of fish, from simple 
morphometric (weight–length) to morphophysiological (liver, gonad and mesenteric fat 
weights) indicators. Each method has its pros and cons, along with limits in their application, 
which are here detailed together with practical recommendations. The utility of each method is 
shown using examples from different marine fish species around the world.

Key words: Fulton, Le Cren, condition factor, relative weight, liver (hepatosomatic) index, 
perivisceral (mesenteric) fat index, digestive index

Biologists have developed a wide range of morphological, biochemical, and physiological 
metrics to assess fish condition and health. These metrics were originally used to quantify 
aspects of human health, but have also proven useful to address questions in life history, 
ecology, and resource management of game and commercial animals (Stevenson & Woods, 
2006). Condition is an important descriptor of fish health. Fish in good condition are 
assumed to have larger energy reserves than poor-conditioned fish, as well as optimum 
health. Here, “fish health” refers to the maintenance of homeostasis, including the normal 
occurrence of life cycles (primarily growth and reproduction) and the preservation of abun-
dance and productivity of populations (Hochachka & Somero, 1973, 1984, 2002; Nemova & 
Vysotskaya, 2004; Depledge & Galloway, 2005). The condition of fish can be assessed by a 
variety of criteria, ranging from simple morphometric indicators based on weight–length 
data and morphophysiological indicators based on liver and gonad weights (Fig. 1.1) or on 
mesenteric fat, to physiological and biochemical measures such as lipid or protein content, 
the concentration of hemoglobin in the blood, the concentration of myoglobin in red muscle, 
the color and volume of the bile, the enzymatic activity of the tissues, the pH of the muscle 
after death, and the content of other substances such as glycogen, glucose, lactate, and 
creatine phosphate (Shulman & Love, 1999). Each of these measurements of fish condition 



2  Condition and Health Indicators of Exploited Marine Fishes

has its own set of advantages and limitations, depending on the objectives of the particular 
study. In some cases, samples have to be processed and analyzed in the laboratory, which 
requires varying degrees of time, specialized training, instrumentation and expense, as in the 
case of biochemical analyses. In other cases the determination of condition indicators may 
involve only simple fish length and weight measures. Overall, the choice of condition 
criteria should be based on the objectives of the particular study, the particularities of each 
species, population and life stage with regard to body distribution and dynamics of energy 
reserves, as well as an understanding of the different condition techniques, including a 
detailed examination of the properties of the dataset as well as available laboratory or 
sampling facilities and budget. In some cases, integration of the information provided by 
different morphometric, physiological, and biochemical condition indicators may better 
reflect the overall physiological condition of the fish. In this chapter, the most used condition 
indicators in fisheries science are explained.

Some of the best techniques for analyzing fish condition are time-consuming and/or costly 
(e.g., lipid analysis with gravimetric methods), whereas other techniques that have lower pre-
cision are easy to carry out on board or in the laboratory with minimum equipment and cost 
(e.g., evaluation of morphometric indices). The expert will need to assess which is the best 
method to use in each case, taking into account the balance between precision, cost, and time. 
Indicators of the condition of exploited fish are similar to those used to measure condition in 
medicine and veterinary sciences. The aim of research in this topic is to identify indicators of 
fish condition that can define the best possible state of organisms and populations, and which 
can also signal and quantify deviations from it. Here we focus on these indicators that are most 
suitable and which have been widely used for the evaluation of fish condition for fisheries 
ecology and management purposes. We must keep in mind, however, that a series of indicators, 
rather than just one, gives much more information. For example, the protein content of cod 
muscle decreases during starvation only after the level of liver lipid has dropped below a certain 
critical value (Black & Love, 1986), so the extent of depletion can be realistically judged only 
by measuring both. The determination of muscle protein alone fails to detect the early stages 
of depletion, while liver lipids do not change further during a long series of subsequent stages.

Figure 1.1  Dissection of a female European hake (Merluccius merluccius) showing the liver and 
ovaries. Photo by Dolors Ferrer.
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Some authors have argued that, apart from the morphometric, physiological and 
biochemical indicators described in this book, it is important to establish autopsy-based 
assessment of the health and condition of fish (Goede & Barton, 1990; Leamon et al., 2000). 
Several infectious agents, such as viral, bacterial, fungal and parasitic infections, are known 
to severely affect fish condition, leading to sublethal or lethal effects (Goede & Barton, 
1990) and therefore an empirical autopsy-based system of organ and tissue indicators would 
improve our knowledge regarding fish condition and also the impact of disease(s) on natural 
fish populations.

Even though simple condition indicators are not always capable of estimating the health 
status of a given species, Lloret et al. (2012) proposed that those such as morphometric and 
organosomatic (biometric) indicators (e.g., Le Cren, Fulton, hepatosomatic), and whenever 
possible total lipid content, are used as a first step for evaluating the amount of energy 
reserves in fish. This should not be a substitute for standard stock assessment methods but 
can provide additional information for determining the status of a given stock. Moreover, 
simple measures of parasite infection such as prevalence, intensity, and abundance could be 
evaluated (Lloret et al., 2012). For practical purposes, the authors proposed that monitoring 
could also include the macroparasites (i.e., those large enough to be seen with the naked eye 
such as cestodes and nematodes) but not the microparasites (e.g., protozoans, which are 
more difficult to detect) even though they may also have an impact on the condition and 
reproduction of fish (see for example Kramer-Schadt et al., 2010; Sitjà-Bobadilla, 2009). 
The monitoring of parasitism will provide therefore a further index of fish health. While no 
single measurement of fish health uniquely indicates a source of stress (Buckley, 1985), all 
these simple related energy reserve and parasitism indicators taken together could be used 
as an index of fish condition (health).

In particular, the analysis of fish health during critical life periods (e.g., prior to spawning 
or migration, or in early life stages) is important for detecting the effects on stock produc-
tivity and thus their availability to the fisheries (Lloret et al., 2012). Several studies suggest 
that the condition of spawners at or just before the time of spawning would be a better proxy 
for reproductive potential (Marshall & Frank, 1999). In addition, knowledge of the lipid 
content in fish species can further enhance our ability to determine the human health bene-
fits of consuming these fish, particularly with regard to essential fatty acids (fish are often 
promoted as a healthy component of the human diet because of high levels of essential fatty 
acids). In the following sections of this chapter we focus on simple condition (morphometric 
and organosomatic) indicators.

1.1	 Morphometric indicators

Morphometric condition indicators are the simplest indicators of energy storage in fishery 
species. They are constructed with simple weight and length data that can be easily obtained 
from surveys or commercial landings using minimum and affordable equipment such as an 
ichthyometer (Fig. 1.2) and scale. These indicators assume that heavier fish of a given length 
are in better condition (Jones et al., 1999). Therefore, they are based on the premise that a 
fish of a given species and length should weigh as much as a standard for its length, and 
variations from the standard are taken as an indication of the relative fitness of an individual. 
These morphometric condition indicators have been available since the early 1900s and 
have undergone an evolution in methodology (Murphy et al., 1991). They have remained 
popular tools because they are inexpensive, simplistic, and mostly non-destructive, and are 
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easily calculated from historical datasets that describe the length and weight of individuals 
(Lambert & Dutil, 1997a; Pope & Kruse, 2001). However, their use has remained some-
times controversial. Blackwell et al. (2000), Pope and Kruse (2001), and Nash et al. (2006) 
provide thorough reviews of the history of condition factors, together with the controversies 
surrounding their analysis and interpretation. Stevenson and Woods (2006) argue that 
morphometric condition factors actually measure the shape (i.e., girth) of a fish rather than 
being a direct measure of the extent of energy reserves, and several reviews have highlighted 
the statistical deficiencies of morphometric condition indicators (e.g., Cone, 1989; Hayes & 
Shonkwiler, 2001). To overcome potential bias and errors, Froese (2006) gives several 
recommendations for the proper use and presentation of morphometric condition factors, 
including guidelines for data collection and analysis of weight–length relationships.

For the determination of condition indicators based on length and weight, it is always 
preferable to use eviscerated weight instead of total weight because the latter is not affected 
by the viscera and gonad weights. Some authors have even used muscle weight instead of 
eviscerated weight (e.g., Kurita et al., 2003).

1.1.1	 Fulton’s K condition factor

K (or Fulton’s) condition factor (Ricker, 1975) was the first morphometric condition factor 
used in fisheries science. According to Nash et al. (2006) the origin of this condition factor 
is attributed to Heincke (1908). K is computed using the formula:

	 = ×3( / ) 100K W L 	 (1.1)

where W is the weight of the individual and L its total length. The index uses 1 as a bench-
mark for the condition of a standard fish: fish above or below 1 are considered in relatively 
better or worse condition than a standard fish, respectively, depending on their distance from 
the benchmark. Nevertheless, it is important to note that the stated formula assumes isometric 
growth in fish, in other words the b-value of the weight–length relationship has to be 3 or 

Figure 1.2  Fish length measurement using an ichthyometer. Photo by David Caballero and Núria 
Zaragoza.
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very close to 3. In some species such as cod, this assumption is met and therefore a number 
of studies have used K to evaluate their condition (e.g., Lambert & Dutil, 1997a; Lloret & 
Rätz, 2000).

However, in other fish species this is often not the case (b-value is not exactly 3 and not 
close to that value), and there appear to be correlations between the condition factor and 
length (Bolger & Connolly, 1989; Cone, 1989). Thus K increases with increasing length 
(b-value >3.0) and decreases with decreasing length (b-value <3.0). In these cases, this 
limits the application of K to fish of similar length within the same species. Thus the inter-
pretation of the condition factor is prone to error when the growth of fish is not isometric 
(when b is above or below 3.0). To use K correctly, the assumption of isometric growth must 
be checked within each stratum (e.g., sex, population) for which comparisons will be made 
(Cone, 1989). For example, a difference in mean condition between two populations can be 
caused by different mean lengths in the respective populations. A way to avoid the problems 
that this could create is to compare individuals of similar length, or populations with similar 
length structures only (Blackwell et al., 2000). However, one must consider that bathymetric 
and spatial distribution of a species is often related to length (see for example Macpherson & 
Duarte, 1991). In order to solve the problem some authors included length as a continuous 
predictor variable into the model of K (e.g., Lloret et al., 2002). Nevertheless, other indica-
tors have been widely used to overcome the length dependence with accuracy, and these are 
described here.

1.1.2	 Le Cren’s relative condition factor (Kn)

Le Cren (1951) attempted to solve the deficiencies of Fulton’s K condition factor by com-
paring the actual weight to a standard predicted by the weight–length regression based on 
the population from which the fish was sampled. Hence, he introduced the relative condition 
factor (K

n
), which compensates for changes in condition with increase or decrease in length. 

It measures the deviation of an individual from the average weight for length in the respec-
tive sample. This length-independent measure of condition is calculated with the following 
formula:

	 =n e/K W W 	 (1.2)

where W is the observed weight of the fish and W
e
 the estimated weight of that fish. K

n
 uses 

1 as a benchmark for the condition of a standard fish: fish above or below 1 are considered 
in relatively better or worse condition than a standard fish, respectively, depending on their 
distance from the benchmark.

However, a disadvantage of K
n
 is that the mean value of this index is a function of weight–

length relationship parameters. Because weight–length relationships can vary among 
populations and geographic sites, comparisons of K

n
 must be confined to those populations 

with homogeneous weight–length parameters (Bolger & Connolly, 1989). The result is that 
different weight–length equations are needed to compute W

e
 for each region or population, 

making comparisons across water bodies difficult.
To solve this problem, one can derive a single weight–length relationship obtained from 

all individuals to be considered in the analysis, with the formula:

	 ′=n e/K W W 	 (1.3)
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where W
e
′ is computed using the weight–length measurements for all individuals that are to 

be included in the analysis. This approach is very similar to the analysis of the relative 
weight (see section 1.1.3) but relies on the availability of the original weight and length data 
to construct a common weight–length relationship from all samples (populations, regions, 
sexes, ages, months, years, etc.). Thus, if a single weight–length relationship is estimated for 
the whole dataset, the K

n
 will be comparable across all samples in the dataset. The necessity 

to have original weight–length data from all samples can be a handicap because it is based 
on cooperation between different agencies/researchers in charge of data collection in order 
to share weight–length data, and on the need to reevaluate the common weight–length 
relationship as new data become available. Then, to evaluate interstock differences in fish 
condition, it would be advantageous to develop stock-level condition indicators from 
standardized databases on weight and length (Marshall et al., 2004).

Many studies have confirmed the ability of this approach to compare the condition of fish 
from different samples, always providing that the estimated weights are derived from 
weight–length relationship representative of all individuals in all samples. K

n
 has been 

applied to several species, for example cod (Gadus morhua) in the North Atlantic (Bishop & 
Baird, 1994; Pardoe et al., 2008) and Arctic cod (Boreogadus saida) in the Gulf of Alaska 
(Khan et al., 1997).

1.1.3	 Relative weight (Wr)

The relative weight was first proposed by Wege and Anderson (1978) as a fish condition 
index, and represents further evolution of the K

n
 concept by allowing comparisons of 

condition across the geographic occurrence of a species. The W
r
 index is calculated as:

	 ×=r s/ 100W W W 	 (1.4)

where W is individual fish weight and W
s
 is a length-specific standard weight predicted from 

a weight–length regression developed to represent the body form of the species across its 
geographic range (see Blackwell et al., 2000 for a list of developed standard weight 
equations). This index uses 100 as a benchmark for fish in good condition: fish above or 
below 100 are considered in relatively better or worse condition than a standard fish, respec-
tively, depending on their distance from the benchmark.

The application of W
r
 has increased over the last decade and has been commonly used as a 

condition assessment tool in United States freshwater fish surveys (Blackwell et al., 2000). 
Relative weight can serve as a surrogate for estimating fish energy reserves, as a measure of 
fish health, and to assess prey abundance, fish stocks and management actions (Blackwell 
et al., 2000). The analysis of W

r
 relies on the availability (prior to the analysis) of standard 

weights equations (W
s
) that cover the entire length structure of the species. If this is not the 

case, problems may arise when determining condition of small and juvenile fishes for example, 
because many of these individuals are below the minimum applicable length of W

s
 equations. 

Thus, the quality of the W
s
 found in the literature can underpin the analysis of the dataset. This 

problem will be solved by using Le Cren’s K
n
 condition factor explained in section 1.1.2.

1.1.4	 Other methods based on weights and lengths

Other methods have been used to analyze weight and length data but their use has been 
rather limited in fisheries science. For example, weight–length regression has been used by 
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several authors to compare condition. Several methods have been proposed for evaluating 
the weight–length regression including ordinary least-squares regression (Cone, 1989) and 
analyses of covariance to test differences in weight–length regression lines (García-Berthou & 
Moreno-Amich, 1993; Blackwell et al., 2000). Another method is the residual analysis 
(Fechhelm et al., 1995), which is synonymous with the concepts of K

n
 and W

r
 in that all three 

examine the deviation of predicted weight from some common weight–length relationship.

1.1.5	 Limits of use of morphometric condition indicators

Many questions remain whether any weight to length ratio is a valid and interpretable 
indicator of physiological condition in fish. Ideally, any study using morphometric condition 
indicators should define formally what is being measured by that condition index and vali-
date it against a suitable benchmark, for example a biochemical index (Davidson & Marshall, 
2010; McPherson et al., 2011). This type of validation has been carried out for several 
species and several studies have found positive relationships between morphometric and 
organosomatic and biochemical indicators in different fish species (Rose, 1989; Brown & 
Murphy, 1991; Lambert & Dutil, 1997a,b; Pangle & Sutton, 2005; Kaufman et al., 2007). Thus 
for example, Fulton’s K condition factor was positively correlated with crude-lipid content 
of juvenile lake herring Coregonus artedi (Table 1.1; Pangle & Sutton, 2005) whereas the 
condition factor correlated with the percentage lipid content of somatic tissue of adult 
Atlantic salmon (Fig. 1.3; Todd et al., 2008). In this case, the poorest condition salmon, 
which were about 30% underweight, showed lipid reserves reduced by about 80% compared 
with the highest condition fish. It is also important to note that the strength of the relation-
ships between various condition factors and biochemical condition indicators can vary 

Table 1.1  Relationship of Fulton’s K condition factor with proximate composition components of 
juvenile lake herring Coregonus artedi*

Day of 
experiment Linear-regression equation MS error

se of K 
coefficient r  2 P

75 Crude lipid = 0.599 + 9.845 K 1.482 1.218 0.612 <0.001
Crude protein = 12.059 + 2.208 K 1.644 0.669 0.208 0.076
Gross energy = 332.8 + 1153.5 K 38,766.324 196.892 0.453 0.004
Ash = 4.232 + 1.666 K 1.152 2.258 0.112 0.642
Water = 86.417 − 8.888 K 26.169 1.528 0.435 0.005

150 Crude lipid = 0.305 + 11.222 K 1.458 1.208 0.615 <0.001
Crude protein = 10.789 + 7.353 K 13.995 0.716 0.661 <0.001
Gross energy = −339.8 + 2687.9 K 47,745.583 218.508 0.737 <0.001
Ash = 4.377 + 0.868 K 0.154 0.559 0.039 0.496
Water = 90.704 − 20.687 K 117.246 1.722 0.748 <0.001

225 Crude lipid = −1.994 + 15.634 K 1.781 1.335 0.640 <0.001
Crude protein = 8.173 + 13.631 K 13.995 0.716 0.674 <0.001
Gross energy = −683.2 + 3577.1 K 72,530.75 269.315 0.695 <0.001
Ash = 2.962 + 4.464 K 3.472 0.894 0.250 0.058
Water = 93.222 − 27.189 K 132.963 2.048 0.697 <0.001

*Linear-regression variables of the relationships for crude lipid, crude protein, gross energy, ash and 
water content and the Fulton condition factor (K) for juvenile lake herring on days 75, 150 and 225 of 
the laboratory experiment. Crude lipid, crude protein, ash and water content were expressed as 
percentages of wet body mass, while gross energy was expressed as J/g wet body mass.
Source: Pangle & Sutton (2005).
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considerably among populations, and also between sexes within populations, for example 
adult walleyes (Sander vitreus) in Canadian lakes (Kaufman et al., 2007).

Notwithstanding these examples, the relationship between condition and lipid reserves 
has not always been observed. Thus for example, the relationships between morphometric 
condition factors and bioenergetic and biochemical indicators in Atlantic herring (Clupea 
harengus) are inconsistent and often nonexistent, with the correlation dependent on both the 
maturity stage of the individual fish and the fat depot with which it was being compared 
(Davidson & Marshall, 2010; McPherson et al., 2011). Whereas Fulton’s K was signifi-
cantly correlated with fatmeter values (Fig. 1.4; Davidson & Marshall, 2010; McPherson 
et  al., 2011), the relationship between K and mesenteric fat was inconsistent and often 
nonexistent (Fig. 1.5; McPherson et al., 2011). Similar to this, in bluegills (Lepomis macro-
chirus), the relative weight shows an imprecise relationship to body constituents such as 
lipid and protein (Copeland et al., 2011). It is even possible that the higher weight of a given 
fish is due to the higher water content in the tissues and not really lipids or any other com-
ponents of energy stores (Shulman & Love, 1999). Because 60–80% of the fresh weight of 
a fish consists of water, variations in water content (and not energy reserves) could account 
for most of the variation in weight. In some cases, the low accuracy of morphometric factors 
renders them invalid for estimating the impact of factors on fish condition. For example, 
parasites provoked a twofold to threefold decrease in triacylglycerol in the body of anchovy 
(Fig. 1.6), while Fulton’s condition factor remained unchanged (Shulman & Love, 1999). 
Furthermore, the relationship between these different indicators may depend on the repro-
ductive stage or the season (Pangle & Sutton, 2005; Copeland et al., 2011; McPherson et al., 
2011). For example, Fulton’s K was particularly correlated with fatmeter values for fish with 
inactive gonads (Fig. 1.7; McPherson et al., 2011).

Despite all these facts, many studies use morphometric condition indicators without 
validation. If morphometric indicators are not validated by being correlated with biochemical 
indicators, then they should be considered as putative indicators of condition (McPherson 
et  al., 2011). Another aspect to consider is the number of data needed to evaluate these 
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Figure 1.3  Relationship between condition factor and percentage lipid content of somatic tissue 
of adult Atlantic salmon (Salmo salar). From Todd et al. (2008).
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simple condition indices. It only makes sense to use them when there are hundreds or 
thousands of individuals measured. Indeed, when there are fewer weight–length values, the 
use of these morphometric condition indices is not recommended, and organosomatic and 
particularly biochemical indicators must be considered instead.
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Figure 1.4  Correlation between fatmeter fat content and (a) Fulton’s K and (b) somatic K from the 
2004 data, and (c) fatmeter fat content and Fulton’s K from the 2005 data, in herring Clupea harengus. 
From Davidson & Marshall (2010).
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The appropriateness of condition indicators in statistical testing has also been the subject 
of several reviews. Bolger and Connolly (1989) indicated several statistical difficulties with 
ratio data such as K

n
 and W

r
, such as increased variability when compared to the variables 

forming the ratio; biased estimation of the true mean value of the ratio; unusual and non-
normal distributions; and a tendency to obscure intervariable relationships. Furthermore, 

2 3 4

Mesenteric fat

1.
2

1.
0

0.
8

0.
6

K

1

(d)

1.
2

1.
0

K

0.
8

0.
6

2

(a)

3 41

1.
2

1.
0

0.
8

0.
6

(b)

2 3 41

1.
2

1.
0

0.
8

0.
6

(c)

2 3 41

1.
2

1.
0

0.
8

0.
6

(e)

2 3 4

Mesenteric fat

1
1.

2
1.

0
0.

8
0.

6

(f)

2 3 4

Mesenteric fat

1

Figure 1.5  Relationship between four mesenteric fat stages and K values across the maturity cycle of 
Atlantic herring (Clupea harengus), including both sexes: (a) immature; (b) maturing 1; (c) maturing 2;  
(d) maturing 3; (e) spawning; ( f ) spent/recovering. These six categories (a-f ) are related to the degree of 
gonad development. Boxplots are used to clarify the differences in median and variance between the 
four mesenteric fat stages. From McPherson et al. (2011).

Figure 1.6  Anchovies (Engraulis encrasicolus) captured in the northwest Mediterranean. Photo by 
Sílvia Vila.
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they indicate that these types of data commonly exhibit heteroscedasticity, which violates 
the assumptions of common statistical tests (e.g., regression and analysis of variance) and 
weakens the power of these comparisons. Given these arguments, it is apparent that care 
should be taken when statistically analyzing condition indicator values to ensure that the 
assumptions of each statistical test are not violated.

Furthermore, the interpretation of any morphometric condition index based on individual 
weights is prone to error when total weights are used. For example, a difference in mean 
condition between two populations can be caused by differences in the development (weight) 
of gonads or by differences in the stomach content between the two samples/individuals. 
Therefore, it is preferable to use eviscerated weights instead of total weights because the 
latter are not affected by the viscera and gonad weights.

Finally, it is important to note that accurate morphometric condition assessments are 
dependent on correct length and weight measurements. Length measurements are relatively 
easy to obtain with fish measuring boards and are generally relatively accurate (Blackwell 
et al., 2000). It is important to clarify if these are total lengths, fork lengths, or standard 
lengths (Fig. 1.8). Weighing fish with scales of appropriate precision can be more difficult 
and time-consuming than measuring fish length and there is increased potential for making 
errors if appropriate scales are not used (Blackwell et al., 2000). The quality of the scales 
must be taken into account, especially with regard to variables such as precision, calibration, 
and motion compensation. Scales with motion compensation allow stable and accurate 
weights to be obtained while at sea. To keep a scale in top condition, calibrations need to be 
carried out on a regular basis. Furthermore, the user must check the units (g, kg, cm, mm, 
etc.) of the weight and length data used to compute these morphometric indicators, as well 
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as the transformations (e.g., logarithmic) that are sometimes needed prior to the development 
of statistical analysis when data do not meet the standard criteria (e.g., normality).

1.2	 Organosomatic (bioenergetic  
or morphophysiological) indicators

Whereas condition indicators attempt to indirectly approximate the energetic fitness based 
on individual whole body mass, other measures of condition relate directly to the 
physiological composition of body tissues, providing a more precise measure of actual 
fitness in terms of stored energy. Organosomatic indicators of condition use an index (ratio) 
of tissue weights where individuals store energy. Among the available indicators, the liver 
somatic index (also called hepatosomatic index, liver index, or ratio of liver weight), the 
mesenteric fat index, and the digestivosomatic index are the most common ones. However, 
the evaluation of these organosomatic indicators is more time-consuming than the analysis 
of morphometric indicators because individuals need to be dissected in order to remove and 
weigh their livers or mesenteric fat.

1.2.1	 Hepatosomatic index (liver index or relative  
liver condition)

The liver (Fig. 1.9) is an important organ for energy storage and is usually the first site for 
lipid (energy) storage in a number of benthic and demersal species such as gadoids (e.g., 
Kjesbu et al., 1991; Lambert & Dutil, 1997b; Lloret et al., 2008) and sharks (e.g., Rossouw, 
1987; Hoffmayer et al., 2006) as well as deep-sea fish such as macrourids (Drazen, 2002). 
For example, lipids normally constitute more than 50% of the liver wet weight of cod 
(Lambert & Dutil, 1997b), up to 66% wet mass (or 82% dry mass) in haddock (Hiddink 
et al., 2005), nearly 70% of the dry liver of hake (Lloret et al., 2008), and up to 56% lipid 
(wet liver mass) of the common macrourids Coryphaenoides armatus and Coryphaenoides 

Note: Mouth should be shut and tail fin pinched closed.
Total length

Common measurements
The measurement is taken flat, not along the curve of the fish.

Girth

Fork length

Standard length

The distance around the fattest part of the fish

Figure 1.8  Common measures of fish length: standard length, fork length, and total length. Original picture 
from Duane Raver, United States Fish and Wildlife Service. Modified by Bob Wattendorf, MyFWC.com.
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acrolepis (Drazen, 2002), confirming the important role of the liver in energy storage in 
these species. In contrast, only about 1% of the wet weight of the muscle tissue of cod 
consists of lipids (Yaragina & Marshall, 2000) whereas lipids constituted on average only 
3% of the dry muscle of hake (Lloret et al., 2008). For all these species, a liver or hepatoso-
matic index would more accurately measure the condition of such fish and therefore the 
periodic evaluation of a liver index would be a more reliable measure of condition than 
simple morphometric indicators. The hepatosomatic index (HSI) can be calculated as:

	 = ×HSI (LW/EW) 100 	 (1.5)

where LW is liver weight and EW the eviscerated weight of the individual.
For other species the liver is still a key organ because it is the principal site of lipogenesis 

and in some species (e.g., small pelagics such as sardines) it seems that during feeding 
periods, excess dietary lipids are exported from the liver and are accumulated and stored in 
specific long-term storage sites such as mesenteric fat, the fat within the white muscle and 
between skin and muscle (Tocher, 2003). The relationship between biochemical composi-
tion (lipid and energy content) and liver index in gadoid species indicates that the liver 
condition index is a good indicator of the energetic condition of these species (Lambert & 
Dutil, 1997b; Hiddink et al., 2005; Lloret et al., 2008). For example, in haddock the hepato-
somatic index was strongly correlated with the liver oil content of the liver (r = 0.9), the 
energy density of the whole fish (r   =  0.9), and total energy stores per fish (r   = 0.8), whereas 
liver energy stores correlated with muscle energy stores (Fig. 1.10; Hiddink et al., 2005). In 
particular, it seems that the liver plays a key role in oogenesis and ovarian development of 
teleosts (Nicolas, 1999), as indicated by the numerous studies that have linked liver indica-
tors and reproductive activity of fish (e.g., sardine; Ganias et al., 2007).

Among the species for which a liver index has been used as an indicator of fish condition 
are hake Merluccius merluccius in the Mediterranean (e.g., Lloret et al., 2008); cod Gadus 
morhua (e.g., Lambert & Dutil, 1997b; Yaragina & Marshall, 2000; Marshall et al., 2004; 
Pardoe et al., 2008) and haddock Melanogrammus aefleginus (Hiddink et al., 2005) in the 
North Atlantic; Arctic cod Boreogadus saida in the Gulf of Alaska (e.g., Khan et al., 1997); 

Figure 1.9  The liver, an important organ for energy stores in gadoid species such as hake Merluccius 
merluccius. Photo by Josep Lloret.
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common macrourids (Coryphaenoides armatus and C. yaquinae) in the Pacific (e.g. Drazen, 
2002); snapper Pagrus auratus in New Zealand coastal waters (e.g. Francis, 1997); lesser 
sand shark Rhinobatos annulatus in South African waters (Rossouw, 1987); and pollock 
Pollachius virens in the Pacific (Jensen, 1979).
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Figure 1.10  The relationship between haddock Melanogrammus aeglefinus (a) hepatosomatic index 
and energy density of whole fish and (b) muscle and liver energy content. From Hiddink et al. (2005).
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1.2.2	 Mesenteric (adipose or perivisceral) fat index

In some fish species, the perivisceral fat (i.e., mesenteric fat or the adipose tissue surround-
ing the gastrointestinal tract; Fig. 1.11) develops in particular seasons, constituting important 
lipid storage. In particular, it seems that mesenteric fat reserves play a key role in the repro-
ductive process of some fish such as bluemouth Helycolenus dactylopterus (Muñoz et al., 
2010), several small pelagics including Sardinella aurita (Ter Hofstede et al., 2007; Mustac & 
Sinovcic, 2012) and sardine Sardina pilchardus (Ganias et al., 2007), and several sparids 
including red porgy Pagrus pagrus (Aristizabal, 2007), blackspot seabream Pagellus 
bogaraveo (Costanzo et al., 2011) and white seabream Diplodus sargus (Martínez-Pastor & 
Villegas-Cuadras, 1996). Mesenteric fat is much more labile than other fat stores, such as 
muscle fat (Slotte, 1999), and therefore mesenteric fat is likely to be the first fat store to 
become depleted during gonad maturation, migration, or overwintering, and the first fat 
store to respond to increased food intake.

From the mesenteric fat stores, a perivisceral fat index (PFI) can be calculated as:

	 = ×PFI (PF / EW) 100 	 (1.6)

where PF is the perivisceral fat weight and EW is the eviscerated weight of the individual. 
Alternatively, visual assessments of the mesenteric fat can be carried out as a gross measure 
of the magnitude of fat deposited in the mesentery and has been applied routinely to several 
species of small pelagic fish such as anchovy (Engraulis encrasicolus) and sardine 
(Sardinops sagax) in South African waters (van der Lingen & Hutchings, 2005), Sardinella 
aurita in the Adriatic (Mustac & Sinovcic, 2012) and northwest Africa (Ter Hofstede et al., 
2007), herring (Clupea harengus) from the North Sea (Slotte 1999), Helicolenus dactylop-
terus in the Mediterranean (Muñoz et al., 2010), and red porgy (Pagrus pagrus) in the 
southwestern Atlantic coast (Aristizabal, 2007).

This method consists of allocation to a number of fat stages depending on the amount of 
fat associated with the intestine and stomach (for example in Sardinella aurita, Table 1.2; 
Ter Hofstede et al., 2007). This technique has the advantages of being quick and easy to 
apply, requires no specialized equipment and is cheap, and is therefore well suited for use at 
sea for those species that accumulate mesenteric fat (van der Lingen & Hutchings, 2005). 

Figure 1.11  Dissected anchovy Engraulis encrasicolus showing the mesenteric fat. Photo by Dolors 
Ferrer.
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These factors, together with good reproducibility and accuracy, demonstrate its efficacy as 
a method for assessing the condition of pelagic fish.

1.2.3	 Digestivosomatic index or digestive index

Some authors have evaluated a digestivosomatic index (DSI), which expresses the size of 
the gut relative to the mass of the body of the animal, as a condition indicator. This index has 
been computed for example in sea cucumber Apostichopus japonicus, a commercially 
important marine species for aquaculture in China (Gao et al., 2008), and in several demersal 
fish in the Mediterranean including Mullus barbatus, M. surmuletus, Pagellus acarne, 
P. erythrinus and Diplodus sargus (Lloret et al., 2002; Lloret & Planes, 2003). The index can 
be expressed as:

	 = ×DSI 100(DW/ ) 100W 	 (1.7)

where DW is the weight of the digestive tract (stomach plus intestine) and W the weight of 
the whole individual (better eviscerated weight). In some cases the digestive tract has been 
weighed with food items inside.

1.2.4	 Limits of applicability of organosomatic indicators

As was the case with the morphometric condition indicators, ideally any study using bioen-
ergetic condition indicators should formally define what is being measured by that condition 
index and validate it against a suitable benchmark, such as a biochemical index (McPherson 
et al., 2011). Although this type of validation has been carried out for several species 
(reviewed by McPherson et al., 2011), many studies use bioenergetic condition indicators 
without validation. If bioenergetic indicators are not validated by being correlated with 
biochemical indicators, then they should be considered as putative indicators of condition 
(McPherson et al., 2011).

Table 1.2  Classification of fat content (categories 0–3) 
of round sardinella (Sardinella aurita)

Category Fat content

0 No fat at all
1 Small chains of fat along intestines
2 Chains of fat cover half of intestines
3 Intestines completely covered with fat

Source: Ter Hofstede et al. (2007).



Condition and Health Indicators of Exploited Marine Fishes, First Edition. 
Josep Lloret, Georgiy Shulman and R. Malcolm Love. 
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

2 � Physiological and biochemical condition 
indicators: their relevance in fish 
metabolism

Physiological and biochemical indicators (biomarkers) are proxies for the functional 
condition and metabolic state of different biological systems: species, populations, 
organisms, and at sub-organism levels (tissues, cells, sub-cells, organelles, membranes, and 
molecules). Their study and practice has been widely developed since the second half of the 
last century, when it became realistic to apply the traditional approaches of physiology 
and biochemistry to companion sciences such as medicine, livestock science and ecology. 
The development of fundamental and applied problems in ecology (adaptations, strategies 
of biological development and features of biodiversity, life cycles, behavior and distribution, 
substance and energy transformation, estimation of species and population conditions and 
their place in communities, ecosystems and the biosphere as a whole) would have been 
impossible without the application of both these classical sciences (Prosser & Brown, 1962; 
Hochachka & Somero, 1973, 1984, 2002; Prosser, 1991). All this is undoubtedly related to 
ichthyology, where the application of these methodologies has become especially urgent, 
for example in the exploitation of natural stocks and their preservation, and in intensive 
aquaculture.

Summary: This chapter defines the physiological and biochemical condition indicators used to 
assess the condition of fish. The relevance of these indicators in several key aspects of fish 
metabolism is described, including energy expenditure, transport of energy, energy catabolism, 
and energy anabolism (accumulation of energy). The analysis of lipids (total lipid and lipid 
classes) along with other parameters that are important for fish condition, and the metabolism 
of carbohydrates, proteins, enzymes, nucleic acid-based indicators, and hormones are described. 
Simple options for evaluating lipid content, such as the analysis of water content and the use of 
electronic portable devices, are also described.

Key words: anabolism, energy, structures, catabolism, lipids, carbohydrates, proteins, enzymes, 
hormones, fatty acids, RNA/DNA ratio
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The development of physiological and biochemical indicators of fish condition was based 
on the morphophysiological indicators that appeared in the first half of the last century and 
which are considered in Chapter 1. In comparison with morphophysiological indicators, 
physiological and biochemical indicators allow:

1.	 the characterization and estimation of significant processes in organisms and populations 
of fish;

2.	 the use of relatively small samples, because (surprisingly) physiological and biochemical 
indicators are considerably less variable than morphological and morphophysiological ones;

3.	 the use of new modified “express” research methods not only in laboratories but also in 
field situations as well as during fishing.

In some cases physiological and biochemical indicators reveal the significance of processes 
that morphophysiological ones are powerless to answer correctly. In this book we will often 
deal with such examples, but here we will consider only one. While studying the influence 
of the nematode Contacaecum aduncum larvae on the content of triacylglycerol (triglyc-
eride) stores in muscles of the Black Sea anchovy Engraulis encrasicolus ponticus 
(Table 2.1), we showed that this influence is very strong: parasites decrease the level of 
accumulated lipid reserves several fold (Shulman & Shchepkina, 1983; Shulman & Love, 
1999). However, at the same time, one of the favorite morphophysiological indices used by 
ichthyologists, Fulton’s K condition factor, differs only slightly between strongly and 
weakly infested fish. Earlier comparison between a condition factor and fat content in many 
Black Sea fish showed that a positive correlation is observed only when fat accumulation 
occurs on a background of stable fish growth (Shulman, 1974).

The aim of this chapter is not to describe a variety of functional and metabolic processes 
in fish but to show the possible (and in some cases necessary) use of certain physiological 
and biochemical indicators for qualitative and quantitative estimation of fish condition in 
the environment. We therefore describe the potential functionality of selected indicators 
and show examples of their use in the solution of problems in fish ecology and fisheries 
management. This book focuses on revealing indicators of fish health (i.e., estimations of 
their optimal condition). In line with other authors (Hochachka & Somero, 1973, 1984, 
2002; Nemova & Vysotskaya, 2004; Depledge & Galloway, 2005), we consider that 
organisms that are healthy are able to support and maintain homeostasis, allowing the 

Table 2.1  Effect of infection by parasites (nematode larvae) on Black Sea anchovy

Months N
Strength of 
infection Condition factor

Triacylglycerols 
in muscle (%)

January 12
12

Weak
Strong

0.70
0.78

2.654 ± 0.75
1.144 ± 0.31

March 12
10

Weak
Strong

0.87
0.88

1.823 ± 0.25
0.322 ± 0.20

May 14
14

Weak
Strong

0.83
0.83

0.363 ± 0.07
0.111 ± 0.03

October 10
10

Weak
Strong

0.86
0.89

3.867 ± 0.40
2.554 ± 0.35

Source: after Shulman & Shchepkina (1983) and Shulman & Love (1999).
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normal occurrence of life cycles (primarily growth and reproduction) and preserving the 
abundance and productivity of populations. In this monograph, we have attempted to 
characterize only those indicators that have already been used successfully to estimate the 
condition of marine fish.

2.1	 Basic concepts

All condition indicators in fish and animals in general are characterized by the processes of 
anabolism (biosynthesis) and catabolism (destruction) of substance (biochemical substrates) 
and energy. Generally speaking, the balance (budget) of substance and energy in organisms 
and populations is shown by the following equation (Ivlev, 1939; Winberg, 1956, 1960; 
Brett & Groves, 1979; Shulman & Love, 1999):

	 = + = + +C A F Q P F 	 (2.1)

where C represents substance and energy consumption, A the part that is assimilated (i.e., 
converted), Q the expenditures for metabolism, P the part used for growth and production, 
and F the unconverted part. The terms “balance” and “growth” are usually used for organ-
isms, whereas “budget” and “production” are used for populations.

2.1.1	 Energy expenditures

The connection between the organism/population and the environment is shown in Fig. 2.1. 
Food and oxygen are the two main channels connecting biological systems in the bio-
sphere. The oxidation of food liberates free energy, which powers all the processes vital to 
the organism (self-renewal, biosynthesis, mechanical work, etc.). Oxidation allows the 
resynthesis of ATP (adenosine triphosphate), without which metabolism is impossible. The 
substrates that are oxidized in catabolism and which liberate energy comprise the main 
organic components of the organism: proteins, lipids, carbohydrates, and products of their 
destruction (nucleic acids are not considered here). Therefore, the level of energy expendi-
ture (its range, rate and intensity) is an indicator of the functional activity of organisms and 
populations.

Figure 2.1  The connection between organism (population) and the environment.
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In fish and most other animals, energy expenditure is commonly determined by oxygen 
consumption (respiration) via “indirect calorimetry” which, in contrast to direct calorimtery 
(i.e., determination of heat production), is carried out under laboratory conditions relatively 
easily. The disadvantage of indirect calorimetry is the underestimation of anaerobic 
pathways in energy catabolism (glycolysis and pentose phosphate pathway). Quantitative 
estimation of total heat production is often unknown. Another problem of indirect calorim-
etry is that it determines only total oxygen consumption, of which a considerable part is 
not  available for ATP resynthesis but is expended uselessly in heat production (which 
dissipates by heating the water that surrounds the fish). It is known from biochemistry that 
oxidative phosphorylation (measured by the relation of ATP resynthesis with oxygen 
consumption) is extremely dependent on different organism condition and cannot represent 
more than 40–60% of total oxygen consumption. Nevertheless, indicators of oxygen 
consumption (oxidative metabolism of total organism) are considered by physiologists as 
the most adequate indicators of functional activity level. Yet another method for deter-
mining the energy expenditure for metabolism is to measure the decrease of “energy 
equivalent” of fish during starvation in experimental or field conditions. This “equivalent” 
is defined by the formula:

	 = + +Q P L G 	 (2.2)

where P represents the physiological (not chemical) calorie content of protein (4.1 kcal or 
17.18 kJ), L the calorie content of lipids (9.3 kcal or 38.97 kJ), and G the calorie content of 
glycogen (4.1 kcal or 17.18 kJ). All values are expressed per gram wet body mass (weight). 
For exact calculations it is necessary to either determine the proximate chemical composi-
tion or incinerate the body in an oxygen bomb calorimeter. This last method is only practical 
for objects of small size. The equipment used to analyze energy expenditures during metab-
olism of the whole organism using oxygen consumption is manifold and well described in 
detail in the literature (e.g., Fry, 1957; Brett, 1973).

To analyze oxygen consumption, several requirements are needed. First, information 
regarding the dependence of rate (or intensity) of oxygen consumption (Q) on body mass 
(W, weight) is shown by the equation:

	 kQ aW= 	 (2.3)

where a and k are coefficients (the latter usually ranges between 0.6 and 0.8). Because fish 
size can be extremely variable, these data are usually shown in the form of a logarithmic 
graph (Fig. 2.2):

	 = +log log logQ a k W 	 (2.4)

Second, fish inhabit water bodies at different temperatures (between −2°C and more than 
30°C), and oxygen consumption depends strongly on temperature. Therefore, for comparison 
of results it is accepted to refer them to 20°C. This is accomplished by using the van ’t Hoff 
coefficient, which determines the dependence of the rate of metabolic reactions on temper-
ature. In a modified form it is expressed by:

	 10 2 1 2 1log 10(log – log ) / ( – )Q Q Q T T= 	 (2.5)
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where Q
2
 is oxygen consumption at 20°C and Q

1
 oxygen consumption at the actual temper-

ature, and T
2
 is temperature of 20°C and T

1
 the actual temperature. At present it is accepted 

that Q
10

 = 2.2 for fish (Winberg, 1956, 1960).
Third, the standardization of oxygen consumption at 20°C allows comparison of the 

energy catabolism of different fish species with considerable precision even if they differ 
greatly by size (for this, the coefficient k in equation 2.3 must range from 0.6 to 0.8). 
However, it is always better to compare fish of similar mass. When fish body mass is 
extrapolated to be equal to unity (e.g., 1 mg, 1 g, 1 kg), then Q = a. It is better to make such 
comparisons at a standard metabolism (SM). SM is determined by oxygen consumption 
under laboratory conditions in a closed respirometer where fish are able to move freely. 
Because of the difficulty of obtaining a “motionless” fish, the determination of basal 
metabolism is not possible without narcotization (Belokopytin, 1993). Hence, the standard 
metabolic rate (SMR) of fish is calculated as the energy consumed by an unfed “immobile” 
fish in a postabsorptive state and with no oxygen debt associated with the previous exhaus-
tive activity (Armstrong et al., 2011). SMR is generally considered to represent a baseline 
level above which metabolism increases when the animal undertakes physiological activities 
such as swimming, processing of food, and mobilization of somatic tissue to form gonads 
(Armstrong et al., 2011). Conversely, active metabolism represents the situation when the 
locomotion of fish is not limited (Ivlev, 1959), and is often called “scope of activity.” Total 
active metabolism is twofold to fourfold higher than SMR (Winberg, 1956, 1960; 
Belokopytin, 1993; Shulman & Love, 1999). Belokopytin showed that energy expenditure 
in active metabolism (Q) depends on the swimming rate (u) as:

	 υ= 0Q Q b 	 (2.6)

where Q
0
 represents basal metabolism (i.e., metabolism at “zero” rate) and b is a 

coefficient.
It is necessary to remember that oxygen consumption also depends on the rate and dura-

tion of swimming (Belokopytin, 1993; Shulman & Love, 1999), food consumption (so-called 
“specific-dynamic effect of food”; Brett & Groves, 1979), “group effect” (in the school, 
oxygen consumption decreased in comparison with a single fish; Alekseeva, 1959), diurnal 
rhythms and some other factors. Therefore it is necessary to take into account all these 
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Figure 2.2  Dependence of oxygen consumption on body weight (mass) in scorpionfish Scorpaena 
porcus. After Belokopytin (1993).
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factors in order to estimate the real value of oxygen consumption of fish as the indicator of 
their functional activity. Further, determination of metabolic level has to be carried out on 
acclimated fish, a topic that is an important element of investigation (Khlebovich, 1986).

2.1.2	 Sub-organism metabolism

In order to characterize and estimate the condition of organisms and populations, it is also 
possible to use (as an approximation) a wide set of sub-organism indicators, namely tissue, 
cell, subcellular and molecular catabolism. Each of these indicators can be used either 
independently or in combination. Thus studying tissue respiration is used to characterize the 
level of oxidative metabolism in white and red muscles, liver, gills and some other organs. 
In order to calculate the unit of studied tissue and the total mass of every tissue, it is necessary 
to know the mass of the tissue or organ and its relation to fish body mass. Because the 
mitochondria are the “energetic factories” of a cell that “burn” oxygen, respiration of these 
subcellular components and their number in a cell are important indicators of the level of 
oxidative catabolism. Key metabolites and the enzymes of the respiratory chain and Krebs 
(tricarboxylic acid) cycle – cytochromes and cytochrome oxidase – are indicators of 
intermediate catabolism. They transfer the electrons that are the main source of the energy 
for resynthesis of ATP through the respiratory chain. The content of ATP, adenosine 
diphosphate (ADP), and adenosine monophosphate (AMP) is a significant indicator of the 
“energetic armament” of an organism. By “energetic armament” we mean the total energy 
status that allows realization of functional processes in the organism at the necessary level. 
Resynthesis (oxidative phosphorylation) is simply the restoration of ATP by the two other 
nucleotides (especially ADP). The energy accumulated in ATP is liberated during its destruc-
tion and becomes available for metabolic processes. Measurement of this accumulation is 
named the adenylate charge (or Atkinson’s charge), which is equal to:

	
+

+ +
[ATP] ½[ADP]

[ATP] [ADP] [AMP]
	 (2.7)

We have mentioned indicators of the level (intensity) of energy catabolism before. However, 
an important indicator of energy metabolism is not only intensity but also its efficiency. 
Oxidative phosphorylation (so-called respiratory control) and Atkinson’s charge characterize 
this efficiency, which does not always correspond to the intensity of energy expenditure, and 
are often inversely dependent. A significant indicator of the transformation of adenyl nucle-
otides is the activity of ATPase, the enzyme that hydrolyzes ATP, releasing large amounts of 
energy. Creatine phosphate, which also accumulates and releases large amounts of energy, 
can also be used to characterize energy status of an organism.

2.1.3	 Blood: transport of energy

Transport of molecular oxygen to tissues and cells from the gills (and partly through the 
skin) is carried out by the erythrocytes (red blood cells). Antarctic fish, which lack red blood 
cells, transport oxygen dissolved in blood plasma. Erythrocytes contain hemoglobin, the 
colored protein that erythrocytes use to transport oxygen. The concentration (number) of 
erythrocytes and their hemoglobin content are the most favored physiological indicators, as 
their determination is not difficult and the obtained results show clearly the level of functional 
activity of the organism. The indicator often used is hematocrit, namely the percentage of 
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erythrocytes in total blood volume. Korzhuev (1964) is right to recommend to calculate 
hematocrit not only per unit of blood volume but also per total mass, because it can vary 
strongly. This author proposed naming the ratio of absolute erythrocyte number and hemo-
globin to fish body mass as “organism supply by blood pigments.” An important characteristic 
of hemoglobin is its degree of affinity to oxygen. This is found by measuring the P

95
 and P

50
 

of hemoglobin: the P
95

 is the partial pressure where hemoglobin is 95% saturated with 
oxygen (i.e., where hemoglobin is mostly in the form HbO

2
); the P

50
 is the partial pressure 

where hemoglobin is 50% saturated with oxygen (i.e., where oxyhemoglobin has dissoci-
ated into Hb and O

2
). Another condition indicator is the oxygen capacity, namely the quantity 

of oxygen bound to 100 mL of blood. The muscle analog of hemoglobin is myoglobin, 
which is found in red muscles and the heart (giving them a red color). It is a reserve 
respiratory pigment when there is a deficiency of hemoglobin in the blood. Another mor-
phological indicator that has a direct relation to oxygen transport is the number of capillaries, 
which have huge importance in this transport function.

2.1.4	 Alternative pathways of energy catabolism

Oxidative metabolism under normal conditions is carried out by aerobic respiration. 
However, in some cases (considered later), aerobic respiration is replaced to a large extent 
or completely by anaerobic pathways of energy utilization comprising anaerobic glycolysis 
and the pentose phosphate pathway. The terminal product of glycolysis is lactate, which 
because of its toxicity for fish is changed partly into alanine. The indicators of anaerobic 
glycolysis and the synthetic pathway that eliminates lactate include the key enzymes of 
these processes, namely lactate dehydrogenase (LDH) and alanine transaminase. The 
pentose phosphate shunt connected with glycolysis is determined by isotope analysis 
(Hochachka & Somero, 1973), but the estimation of fish condition is quite difficult.

2.1.5	 Energy anabolism: accumulation of energy

Energy accumulates in an organism to compensate for its expenditure and to form stores 
(reserves) used in provision of energy necessary for vital processes, such as maturation, 
spawning, migration, and wintering (the last two are not observed in fish). Calculation of 
accumulated energy is accomplished using eqn. 2.2. Approximate calculations assume that 
1 g of fish dry mass is equal to 1000 kcal (Winberg, 1956, 1960). The calculation of energy 
destruction in fish under natural conditions is also accomplished using this formula but not 
by oxygen consumption. To determine oxygen consumption is possible only under labora-
tory conditions, which as a rule is difficult compared with measurement under natural 
conditions. In balance experiments on food consumption (nutritive rations, intensity and 
efficiency of utilization), the energy method has an advantage compared with the substance 
one as it is independent of transformation processes. The energy method also makes inter-
pretation of the obtained data easier (Ivlev, 1939; Winberg, 1956, 1960). The disadvantages 
of such methods will be considered later. Values of accumulated energy are the most 
significant indicators of fish condition (in both single organisms and populations as a 
whole). Therefore, as distinct to energy catabolism, where indicators of fish condition 
include enzyme reactions and metabolites, such detailed biochemical methods for indica-
tion of anabolic processes are not necessary (strictly speaking, “ATP resynthesis from pre-
cursors” is a significant process in energy anabolism but is related to the sub-organism or 
molecular level and we have examined this previously).



24  Condition and Health Indicators of Exploited Marine Fishes

2.2	 Lipids

2.2.1	 Lipids as energy substrates

Although lipids constitute a smaller proportion of fish body mass (in comparison to proteins), 
they are a much stronger indicator of the condition of organisms and populations. Another 
advantage of using lipids is that total lipid content varies greatly from year to year, from one 
area to another, and from one population to another, thus being a good indicator of fish 
condition. Conversely, the dynamics of protein content in fish is quite stable and does not 
have such indicative power as lipids. Glycogen content is also not a good indicator of fish 
condition because its quantity is usually low (with the exception of some species) and has 
frequent fluctuations related to short-term changes in fish condition.

Lipids, along with proteins and carbohydrates, are the main energy stores in teleosts and 
are the first energy reserves to be catabolized during non-feeding and reproductive periods. 
In juvenile and adult cod, for example, there is clear evidence of lipid depletion first followed 
by protein (Grant & Brown, 1999). Lipids are a good indicator of stored energy because 
their energy density is high and labile. Lipids are a key constituent of eggs, and are corre-
lated with the level of protein reserves (McPherson et al., 2011).

Neutral lipids constitute the stores with the highest accumulated energy (total neutral 
lipids are termed “fat”). Several different families of neutral lipids are present in all cells, 
including triacylglycerols (triglycerides or TAGs), free fatty acids, and esters of both choles-
terol and waxes (the latter are observed only in some species). TAGs represent 80–90% of 
total neutral lipids and are the predominant storage form of chemical energy.

A considerable advantage of evaluating neutral lipids (including total fat content and 
TAGs) is that these compounds are present in a large number of fish species and exhibit high 
variability in fish life-history and annual cycles. They play an important role in the 
accumulation and expenditure of energy reserves. This dynamic build-up and decline of 
energy is connected with all stages of ontogenesis, the ecophysiological features of fish 
species and populations, and fish behavior and distribution. Fat is used for reproductive 
purposes during breeding, with subsequently levels as low as 1–3% of wet mass. Fat is then 
accumulated during feeding periods, often up to levels of 20% or more in some species. Fat 
content can also vary from year to year, from one population to another, and from one 
habitat to another, and this is mainly attributed to changes in TAG content.

The distribution of fat stores in different organs and tissues provides significant 
information about the ecophysiological features of fish. The determination of fat utilization 
as an energy substrate in fish is carried out in a simple way, by taking into account the 
decreasing fat content or its absolute quantity in the body or in separate tissues and organs. 
The proximate body composition (including lipids) is usually evaluated as a percentage of 
wet weight as it corresponds to real lipid content in an organism. In some cases calculations 
are presented in the form of percentage of dry weight, which only provides a relative param-
eter as such values depend on several variables. The relationship between fat content and dry 
and wet mass of fish is shown in Fig. 2.3 (Shulman, 1971).

2.2.2	 Lipids as structural metabolic substrates

Structural lipids (basically phospholipids and cholesterol) play an important role in the 
functioning of organisms. They are components of basal membranes of cells and subcellular 
organelles, forming a bilayer with the phospholipid “head” toward the outside and fatty acid 



Figure 2.3  (a) Relationship between fat content per wet and dry weight in some Black sea fish:  
1, sprat; 2, red mullet; 3, pickerel; 4, whiting; 5, anchovy; 6, Black Sea anchovy; 7, horse-mackerel.  
(b) Summary curve. After Shulman (1971).

Fat content, per dry weight (%)

30
(a)

30 40 50 60

25

20

20

15

10

10

1
2
3
4
5
6
7

5

0

F
at

 c
on

te
nt

, p
er

 w
et

 w
ei

gh
t (

%
)

Fat content, per dry weight (%)

30
(b)

30 40 50 60

25

20

20

15

10

10

5

0

F
at

 c
on

te
nt

, p
er

 w
et

 w
ei

gh
t (

%
)



26  Condition and Health Indicators of Exploited Marine Fishes

“tail” toward the inside. Phospholipids are abundant in membranes and form the framework 
in which other components of the membrane (e.g., proteins) are embedded. Together with 
their structural significance as the membrane’s “skeleton,” phospholipids are involved in the 
metabolic activity of cells, regulating their viscosity and permeability and playing a role in 
the transport of substances across the bilayer. Phospholipid structure is very sensitive to 
different factors, particularly temperature. Phospholipid content is relatively stable and 
consists of about 0.5–1.5% of wet mass. The main phospholipid fractions include phospha-
tidylcholine, phosphatidylethanolamine, and phosphatidylserine. These constitute up to 
70% of total phospholipids. Other fractions include phosphatidylinositol, sphingomyelin, 
cardiolipin and some others, which constitute the remaining 30%. Apart from phospho-
lipids, cholesterol is an important component of cell membranes and serves many other 
functions as well. Cholesterol helps to “pack” phospholipids in the membranes, thus giving 
more rigidity to the membranes.

2.2.3	 Fatty acids

Fatty acids, and more specifically their radicals (glycerol ethers), are the most important 
components of lipids, defining their energy value (in the case of triglycerides) and forming 
the structural–metabolic “skeleton” of cellular and subcellular membranes (phospholipid 
content). Fatty acids can be divided into saturated, monounsaturated, diunsaturated, and 
polyunsaturated (polyenic) acids depending on the number of bonds in the carbon chain. 
Two families can be distinguished: linolenic acids (omega-3, ω3, or n-3) acids; and linoleic 
acids (omega-6, ω6, or n-6). The differences between these families are based on the 
chemical structure of the fatty acid and location of the chemical double bonds in their struc-
ture. Omega-3 fatty acids have at least three double bonds starting from the third carbon 
from the methyl end of the fatty acid structure, whereas the omega-6 fatty acids have their 
first double bond located at the sixth carbon in the carbon chain from the methyl end.

Omega-3 fatty acids are relatively more abundant in marine fish, whereas omega-6 fatty 
acids are relatively more abundant in freshwater fish, and therefore the n-3/n-6 ratio in 
marine fish is substantially higher than that of freshwater fish (Lovern, 1964; Sargent, 1976; 
Ackman, 1989). This difference seems to be caused by the different feeding regimes: marine 
primary plankton and benthos have more lipids with omega-3 acids, whereas freshwater 
ones have more lipids with omega-6 acids. Anadromous and catadromous fish have a similar 
amount of fatty acids of both classes.

There is a great variety of fatty acids contained in fish (more than 20 in total). However, 
only some of them are represented in noticeable number (more than 2–5% of total of all 
fatty acids). These include myristic (14:0), palmitic (16:0), stearic (18:0), palmitoleic 
(16:1), oleic (18:1), arachidonic (20:4 ω6), eicosapentaenoic (EPA, 20:5 ω3), 20:5 ω6, and 
docosahexaenoic (DHA, 22:6 ω3) acids. Saturated and monounsaturated acids are used 
mainly as sources of energy during lipolysis (especially palmitic and oleic acids). Polyenic 
acids are available primarily in phospholipids. Food is the source of all fatty acids in fish. 
Fatty acids are accumulated in TAGs mainly unchanged, whereas in phospholipids of 
freshwater fish linoleic acid is transformed into polyenic acids by elongation of the carbon 
“tail” and desaturation (increasing the number of double bonds) (Lovern, 1964; Ackman, 
1967). However, as shown by Sargent (1976) and Sargent et al. (1987, 1995), marine fish 
have lost the ability to produce polyenic acids from linolenic acid; therefore, EPA and DHA 
are essential fatty acids (EFAs) for marine fish. These acids are important structural com-
ponents of membranes and, particularly EPA, have a considerable role as precursors of 
important biologically active substances such as prostaglandins and leukotrienes, while 
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DHA is important for metabolism of neural tissues (Tocher, 2003). Restriction of EFAs 
results in a variety of ill effects on fish, including reduced fecundity and embryonic via-
bility, disturbed growth and decreased survival at early life-history stages, improper pig-
mentation, impaired vision and inability to feed at low light intensity, impaired ontogeny of 
behavior such as schooling, and decreased membrane function at low temperatures (Tocher 
& Sargent, 1984). EFAs are produced in appreciable quantities in pelagic ecosystems only 
by phytoplankton and are transferred up food webs, and therefore EFA availability to fish 
is strongly regulated by bottom-up processes (Litzow et al., 2006).

Fatty acid composition of fishes and their tissues as well as their dynamics are significant 
indicators of the metabolic features of individuals organism and populations of fish. These 
indicators allow estimation of the level of functional activity in fish and many other aspects 
of fish biology related to the environment. The content of each fatty acid in lipids is usually 
expressed as the percentage of the total content of all fatty acids. However, this informative 
index can also be calculated as the quantity of each fatty acid per absolute content of lipids. 
Unfortunately, such calculations are very rarely made. We do not discuss the enzymes 
involved in lipid and fatty acid metabolism for estimating the condition of individual fish 
and fish populations because the indicators described above are thought to be sufficient for 
use in ecology and fisheries biology.

2.2.4	 Lipid analysis

The determination of fat content is known to be one of the best biochemical parameters for 
evaluating the energy reserves of fishes (Adams, 1999; Shulman & Love, 1999; Morris & 
Culkin, 2000). It is well accepted that the evaluation of total lipid reserves in whole fish or 
in particular tissues and organs where fat is stored would be an accurate way to monitor the 
condition of fish (at least during pre-spawning). Before choosing the tissue/organ where 
lipid is to be analyzed, one must first look at the principal site of lipid storage, which depends 
on the fish, as even species of the same genus may have quite different fat depots. In general, 
fat is concentrated in the liver in benthic and demersal species and the muscle in pelagic 
species. Abdominal (adipose or perivisceral) fat can also be an important lipid compartment 
for both demersal and pelagic species. Nevertheless, total lipid extraction and quantification 
is more costly and time-consuming than the evaluation of simple morphometric and mor-
phophysiological indicators (chapter 1) because it has to be performed with special methods 
in the laboratory.

The high variation in lipid reserves between individuals of the same species is a common 
feature in wild fish and may reflect the large differences in nutritional status and reproductive 
potential of individuals within a given population. This strong intrapopulation variability of 
lipid reserves probably explains the low correlation values between the different variables 
studied. Thus, for example, total lipid content in the liver of European hake in the northwest 
Mediterranean can vary from 2 to 67% in wet weight, whereas in the liver of cod total lipid 
concentration varies between 30 and 78% wet weight (Falch et al., 2006). This strong intra-
population variability in lipid concentration must be taken into account in the sampling design.

In some fish, including several reef species from the Great Barrier Reef, the densities of 
hepatocyte vacuoles were quantified with histological techniques and were used as an 
indicator of lipid and glycogen stores within the liver (see for example Pratchett et al., 2001, 
2004). Hepatocyte vacuoles are bodies for short-term lipid storage, representing energetic 
resources that are immediately available to the fish.

In other cases, the lipid content in a particular organ and the weight of that organ relative 
to the total weight of the fish has been combined to produce condition indices. Thus for 
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example, a lipid hepatosomatic index (LHSI) and a lipid gonadosomatic index (LGSI) can 
be computed with the following formulas:

	 LHSI ABSL / EW 100= × 	 (2.8)

	 = ×LGSI ABSG / EW 100 	 (2.9)

where EW is the eviscerated wet weight and ABSL and ABSG are the absolute lipid content 
in the liver and ovary, respectively, computed by multiplying the respective lipid contents (in 
percent wet weight) by total liver and ovary wet weights. These indices have been used, for 
example, with hake in the Mediterranean (Lloret et al., 2008).

Apart from the total lipid content in adult and juvenile fish, lipid content of larvae has also 
been analyzed. In a study by Sabatés et al. (2003), changes in lipid concentration during 
early ontogenetic stages were determined in three mesopelagic fish species, the authors 
demonstrating that total lipid content as a proportion of dry mass per larva increased over 
the course of development (Fig.  2.4). Furthermore, total lipid concentrations increased 
significantly from the larval to the juvenile stages in Benthosema glaciale and Maurolicus 
muelleri. This study allowed comparison of the ability of early developmental stages of 
deep-sea fish to accumulate energy reserves, both within and among species. Furthermore, 
the study revealed that high lipid content in their larvae was associated with high wax esters 
percentage for buoyancy requirements during vertical migrations (Sabatés et al., 2003). In 
this case, the discrimination of lipid classes is essential for identifying the biological roles 
of lipids associated with energy demands of particular life stages. Furthermore, differences 
in lipid composition related to different life strategies have been observed for five notothe-
nioid fish species from high-Antarctic seas (Hagen et al., 2000).

Ultimately, the separation and evaluation of lipid classes (particularly the evaluation of tri-
glycerides, the most important lipid classes for the energy stores of fish) would provide the 
best measurement of fish condition, even though the specific methodology for lipid class sep-
aration (e.g., high-pressure liquid chromatography) is much more time-consuming than the 
previous indicators (e.g., analysis of total lipid with Soxhlet apparatus; Fig. 2.5) and therefore 
is probably impractical for regular fishery assessment and management purposes. Historically, 
most research on fish condition indicators related to total fat, because even by the first half of 
the last century the extraction of total fat from fish tissues was done using a simple procedure 
(with ethyl ether), from which information on the level and dynamics of fat content in fish 
body was obtained. Although at present a number of scientists studying fish condition have 
turned to the determination of triacylglycerols instead of total lipid, data on total lipid content 
must not lose their value because ethyl ether and similar procedures already extract 
neutral lipids (mainly triglycerides), and because are easy to obtain in the laboratory.

Methods of lipid analysis (Folch et al., 1951; Bligh & Dyer, 1959) are well described in 
several papers and books and we will therefore not compile a list of the different techniques 
that can be used. For example, the book by Christie (2003) provides a good compendium about 
isolation, separation, identification, and structural analysis of lipids, including instructions for 
storage of tissues and sample handing. We recommend reading carefully the particular instruc-
tions for lipid analysis, including the preliminary treatments prior to extraction. For example, 
if frozen storage extends too long, lipids from fish tissues undergo lipolytic changes (enzymatic) 
resulting in an accumulations of free fatty acids in most marine species (Zhang & Lee, 1997). 
In fact, these free fatty acids have been long recognized as a seafood quality index as an 
alternative to sensory assessments (see for example Zhang & Lee, 1997).
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Figure 2.4  The relationship between total lipid content and dry mass in the larvae of (a) Benthosema 
glaciale, (b) Hygophum benoiti and (c) Maurolicus muelleri. From Sabatés et al. (2003).
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It is also worth noting that total lipid content is often well correlated with better measures 
of energy reserves such as EFAs, TAGs, and phospholipids, which are the dominant lipid 
classes, and energy density. TAGs are the major energy storage form in fish and have impor-
tant ecophysiological relevance as indicators of growth potential and survival (Sogard & 
Olla, 2000). EFAs are nutritionally critical lipid components, particularly EPA and DHA, 
which are most commonly identified as limiting in fish (Tocher, 2003). Restriction of EFAs 
results in a variety of ill effects in fish, including decreased fecundity and reduced embryonic 
viability (Fig.  2.6), impaired growth and decreased survival of early life-history stages, 
improper pigmentation, impaired vision and inability to feed at low light intensity, impaired 
ontogeny of behavior such as schooling, and decreased membrane function at low tempera-
tures (Tocher, 2003). For example, there is a positive significant relationship between total lipid 
content and content of EPA and DHA in different species of fish from the northeast Pacific 
(Fig. 2.7c and d; Litzow et al., 2006). In fact, differences among species in total lipid content 

Figure 2.5  Soxhlet apparatus used to extract and evaluate total lipid content in fish samples. Photo by 
Josep Sánchez-Pardo.

Figure 2.6  Embryo of a catshark (Scyliorhynus canicula). Photo by Bernd Morker.
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Figure 2.7  Increases in triacylglycerols (TAG) and TAG-containing essential fatty acids with increasing 
lipid content for 29 species of myctophids, showing the relationship between total lipid content and  
(a) structural phospholipids (PL), (b) neutral TAG, (c) TAG-containing eicosapentaenoic acid (EPA), and 
(d) TAG-containing docosahexaenoic acid (DHA). Plotted data were arcsine transformed. From Litzow  
et al. (2006).
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are expected to be expressed almost entirely by differences in TAGs (Olsen, 1999). Also, 
Litzow et al. (2006) reviewed the positive relationship that exists between total lipid content, 
phospholipids, and triacylglycerol content for different myctophids (Fig. 2.7). Finally, there 
is a positive relationship between total lipid content and energy density, making it possible 
to estimate energy density from lipid using energy equivalents (e.g., energy density can be 
estimated by converting lipid to energy based on an assumed energy equivalent of 9.5 kcal/g; 
Winberg, 1956, 1960; Rosa et al., 2010).

2.2.5	 Rapid methods for fat measurement in fish

Apart from the standard methods for determination of total fat, there are several methods for 
rapid fat measurement in fish.

2.2.5.1	 Evaluation of water content

An easy way to estimate total lipid content in a given tissue is from the tissue water 
content, which is often (but not always) inversely related to total lipid content in many 
species. Analysis of lipid and water content in different tissues of fish indicates that these 
constituents are negatively correlated, so that accurate predictions of each component can 
be obtained from the measurement of any of the others. Thus for example, the relative 
liver and ovary lipid contents (as percent of dry weight) in European hake are inversely 
and significantly and positively related to the water content in these tissues (Lloret et al., 
2008), even though the relationship is better in the liver (r = −0.80) than in the ovary 
(r = −0.40; Fig. 2.8). Similar results are found in cod, in which seasonal changes in water 
and energy content of muscle and liver followed an inverse pattern (Lambert & Dutil, 
1997a), as well as in juvenile Coregonus artedi (Table 2.2; Pangle & Sutton, 2005) and in 
Sardinella aurita from the Tunisian coast (Ben Rebah et al., 2010). Also, in red mullet 
(Mullus barbatus) from the northwest Mediterranean there is a good inverse relationship 
between water lipid content in the muscle (Fig. 2.9; Lloret et al., 2007). Thus, a simple 
condition index based on tissue water content could be considered as a rapid indicator of 
tissue lipid reserve of some species. Nevertheless, the relationship between water content 
and lipid content must first be validated because it may be that the utilization of lipid 
reserves can actually result in an increase in water content and consequently body weight 
(i.e., water replaces lipids). The estimation of water content can be done by drying wet 
samples of fish tissues. This procedure can be carried out in the laboratory or even on 
board ship using oven-drying or more rapidly by lyophilization. Since total weight = dry 
weight + water weight:

	 = ×Fat % Dry weigh( ) )t (%k 	 (2.10)

where k is a coefficient. See, for example, our example on the Black Sea sprat (Fig. 2.10; 
Minyuk et al., 1997).

2.2.5.2	 Electronic portable devices

On the basis of this inverse relationship between water and fat, electronic portable devices 
have been constructed to non-invasively measure the water and hence the fat content in fish 



Figure 2.8  Relationship between lipid content (% dry weight) and water content in liver (a, polynomial relation) and ovary  
(b, linear relation), between lipid hepatosomatic index (LHSI) and lipid water content (c, exponential relation), and between lipid 
gonadosomatic index (LGSI) and ovary water content (d, linear relation) in European hake. Liver lipid content and LHSI consider  
all individuals while ovary lipid content and LGSI consider female pre-spawners only. From Lloret et al. (2008).
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muscle (see for example Kent, 1990; Kent et al., 1993). However, in both cases we need to 
validate (on a species basis) the assumption that the water content is inversely related to the 
lipid content. These electronic instruments are particularly useful for measuring the muscle 
fat content of oily fish and therefore these instruments can facilitate routine collection of fish 
condition data at the individual level. Although a number of techniques exist, the Distell fish 
fatmeter (Fig. 2.11; Kent et al., 1993), which estimates muscle fat content using microwave 
technology, has been applied to a number of pelagic species including herring (Vogt et al., 
2002; Davidson & Marshall, 2010) and tuna Thuna thynnus (Goñi & Arrizabalaga, 2010). 
Compared with the other indicators, which require sacrifice of the organism, the fatmeter 
is a non-destructive method that is easy and rapid to use. The accuracy of this method has 

Table 2.2  Relationship of water to proximate composition components of juvenile lake herring 
Coregonus artedi*

Day of 
experiment Linear-regression equation MS error se of W r  2 P

75 Crude lipid = 46.661 − 0.478 W 14.34 1.671 0.262 0.039
Crude protein = 31.0924 − 0.228 W 2.961 0.594 0.403 0.012
Gross energy = 9493.5 − 103.74 W 23,876.5 154.526 0.665 <0.001
Ash = 23.176 − 0.223 W 6.446 2.289 0.579 0.285

150 Crude lipid = 49.698 − 0.532 W 41.492 0.907 0.791 <0.001
Crude protein = 41.164 − 0.331 W 16.949 0.550 0.766 <0.001
Gross energy = 11,358.4 − 128.79 W 10,241.612 101.201 0.968 <0.001
Ash = 11.672 − 0.087 W 1.125 0.463 0.274 0.038

225 Crude lipid = 49.032 − 0.542 W 56.34 0.960 0.815 <0.001
Crude protein = 53.699 − 0.486 W 45.421 0.571 0.907 <0.001
Gross energy = 11,386.9 − 129.06 W 9695.38 98.465 0.960 <0.001
Ash = 15.914 − 0.134 W 3.465 0.895 0.246 0.048

*Linear-regression variables of the relationships for crude lipid, crude protein, gross energy and ash 
content, and whole-body water content (W, %) for juvenile lake herring on days 75, 150 and 225 of the 
laboratory experiment. Crude lipid, crude protein, ash and water content were expressed as 
percentages of wet body mass, while gross energy was expressed as J/g wet body mass.
Source: Pangle & Sutton (2005).
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Figure 2.9  Linear relationship between lipid content (% dry weight) and water content in muscle of 
red mullet (Mullus barbatus) in the Mediterranean. y = −1.553x + 127.14, r2 = 0.34, P < 0.05, n = 98. 
From Lloret et al. (2007).
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et al. (1997).

Figure 2.11  Fish fatmeter. Photo by J.A. Litster (www.distell.com).
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been tested against traditional reference methods of lipid determination such as the 
Soxhlet procedure (Vogt et al., 2002; Davidson & Marshall, 2010) and the Bligh and Dyer 
method (Goñi & Arrizabalaga, 2010). For example, there is a positive relationship bet-
ween fatmeter values and total lipid content estimated with Soxhlet (Fig. 2.12; Davidson 
& Marshall, 2010). Impressive data for the relationship between standard methods of fat 
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determinations and Kent’s method are also demonstrated by Kaga et al. (2009) carried out 
on Pacific salmon of genus Oncorhynchus.

Because the fatmeter actually evaluates the water content in the tissue (which is supposed 
to be inversely related to lipid content), the fatmeter must be calibrated by the manufacturer 
according to the species to be sampled and the type of fillet. Ideally, the fatmeter should be 
routinely calibrated against chemical analyses of fat content for the specific study species 
(Davidson & Marshall, 2010). For example, the relationship between the fatmeter and 
Soxhlet estimates of muscle fat content in herring is quite strong (r2   =  0.65, n   =   42, P < 0.001; 
Davidson & Marshall, 2010). Although the fatmeter can be used on a whole fish, the logistics 
involved in using the fatmeter in the field (e.g., on-board a research vessel) might require 
that the fatmeter be used on a gutted carcass rather than a whole fish in order to cause little 
disruption to the established sampling protocol (Davidson & Marshall, 2010). Because of 
the reliance of the fatmeter on water content of the fish muscle, fatmeter readings are 
considerably influenced by factors affecting the water content of fish, such as icing (increases 
water content) or desiccation, and therefore the fillet should not be allowed to become 
desiccated or to take on water as both will affect the reading (Vogt et al., 2002). Further, it 
is important to check the characteristics of the fatmeter used, for example to ensure the 
appropriate fatmeter sensor head according to the depth of the fish muscle (Davidson & 
Marshall, 2010).

2.3	 Carbohydrates

The most sensitive carbohydrate indicators of fish condition are glycogen and glucose. 
Glucose is a terminal product of glycogenolysis, and mobilization of glucose (glycolysis) is 
involved in the Krebs cycle. While neutral lipids (fats) and free fatty acids are “strategic” 
stores, glycogen and glucose are used for “tactical” requirements – carbohydrates are easily 
mobilized, providing a rapid supply of energy for locomotion during attack on prey or 
escape from predators. Glycogen and glucose are also used by fish in environments where 
oxygen is deficient, as glycolysis can proceed under anaerobic conditions. The main stores 
of glycogen in fish are concentrated in the liver, from which it is easily mobilized due to the 
high metabolic activity of this organ. In addition, glycogen is also mobilized from white 
muscle and this is responsible for “burst work.” Its content in fish is, as a rule, lower than 
that of fat (1–5% of wet mass). Fluctuations in glycogen content, by virtue of its physiological 
activities, are less well ordered. When identifying glycogen content in fish, one can face 
serious technical difficulties resulting from the extreme overexcitement of fish during catch-
ing and handling, and this can result in the almost total disappearance of glycogen from the 
tissues (Love, 1970). In order to identify the true glycogen content in tissues, it is necessary 
to acclimate the fish by keeping them for some time (often rather a long time) under exper-
imental conditions during which glycogen content can be restored. Love (1970) found an 
original indirect way for determining glycogen content in gadoids: based on the relation 
between glycogen content and pH, he estimated the level of glycogen with an indirect index.

The terminal product of glycolysis (glucose destruction) in aquatic animals including fish 
is lactate, which due to protective synthesis is transformed partly into alanine. The enzymes 
that participate in this process are lactate dehydrogenase and alanine aminotransferase. 
These enzymes and products of glucose catabolism (metabolites) can give important 
information for estimating fish condition.

The main reason why carbohydrates are not widely used as condition indicators in fish is 
because these compounds, particularly liver and muscle glycogen, are important sources of 
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energy for intensive activity of fish, but stores are usually relatively small and cannot sustain 
endurance over the long term (Busacker et al., 1990).

2.4	 Proteins and products of protein and  
nitrogenous metabolism

Proteins are some of the most significant organic components of organisms, being part of 
the structural foundation of cells and the molecular structure of enzymes, and participating 
in energy metabolism. It was no accident that until the second part of the last century (before 
the discovery of the special significance of nucleic acids), life was perceived as “protein 
bodies.” Compared with lipids, protein content in animals, including fish, is relatively stable 
(about 20% of wet mass) with no great fluctuations (18–22%). Total protein content 
(including mainly structural proteins) is determined using the Kjeldahl apparatus. This 
measures total nitrogen content, and use of a conversion coefficient (6.25) allows total 
nitrogen to be converted to total protein content. More specifically, Kjeldahl identifies all 
nitrogen components of organic substances, which are conventially named “raw protein.” 
However, for determination of functional proteins actively involved in metabolism, the 
method designed by Lowry et al. (1951) has been used, which does not consider the large 
mass of structural proteins. However, while carrying out balance investigations it is necessary 
to know total protein content when protein growth and productivity are identified. 
The expression “protein accumulation” is incorrect as structural and metabolically active 
proteins are not accumulated but assimilated (or converted), i.e., are involved in active 
metabolism. The term “accumulation” is used when protein is stored (i.e., to form reserves). 
However, proteins also have other more significant functions. When calculating the energy 
equivalent of protein, its calorie content is considered to be equal to (i) 5.6 or (ii) 4.1 kcal/g 
wet mass. In case (i), the total energy equivalent is the quantity of energy in 1 g of protein; 
case (ii) shows the useful energy released during protein catabolism (proteolysis). In 
comparison with fats and carbohydrates, proteins are metabolized not to H

2
O and CO

2
, but 

to H
2
O and NH

3
 (which contains energy that is not involved in metabolism). During prote-

olysis, intermediate products of protein catabolism are formed (polypeptides, dipeptides, 
and oligopeptides) whose energy is released by protease enzymes. At this stage it is necessary 
to refer not to protein but nitrogenous catabolism, since the processes observed are connected 
not with proteins but with derived products (which all contain nitrogen).

For many ecological investigations where approximate data on “raw protein” content in 
fish are sufficient, the estimation of protein content can be expressed by the following 
formulae (Shulman & Kokoz, 1971):

	 ≈ = +RP UDM DM – (F G) or 	 (2.11)

	 RP UOM DM – (F G MM)≈ = + + 	 (2.12)

where RP represents “raw protein,” UDM unfatted dry matter, UOM unfatted organic matter, 
F fat, G glycogen, and MM total mineral matter determined as “ash.”

There is a direct relation between “raw protein,” determined by total nitrogen in Kjeldahl 
apparatus, and UDM and UOM calculated with high correlation coefficient (r = 0.9): 
RP = 98.9 + 1.01UDM and RP = 51.9 + 1.05UOM (Shulman & Kokoz, 1971). At the same 



Physiological and biochemical condition indicators: their relevance in fish metabolism  39

time it is necessary to remember that “raw protein” is calculated by multiplying the total 
nitrogen content by the conversion coefficient of 6.25; however, it cannot be considered 
absolutely exact as it corresponds only with average content of nitrogenous components in 
protein. If we consider the content of glycogen and total mineral matter equal to about 10% 
of dry matter, it is sufficient only to determine dry matter content and to calculate fat content 
by the formula connecting dry matter with fat content (see equation 2.10) in order to obtain 
approximate values of “raw protein” content in fish.

The terminal process of nitrogenous catabolism is the formation of free (desaminated) 
amino acids, which are involved in the Krebs cycle. All proteins contain 20 amino acids, 
some of which are essential (i.e., they are not synthesized by the organism but can only be 
obtained in food). The essential amino acids in fish (as well as higher animals) are lysine, 
arginine, valine, phenylalanine, leucine, isoleucine, threonine, histidine, methionine, and 
tryptophan. The presence (in definite proportions) or absence of these amino acids in fish 
food is an indication of their nutritional value. A significant part of nitrogenous metabolism 
is transamination, i.e., the interconnected transformation of amino acids by turnover of 
active amino groups. Two of the important enzymes involved in transamination are aspartate 
aminotransferase and alanine aminotransferase. These enzymes are often defined by inves-
tigators as indicators of condition, characterizing the direction of nitrogenous catabolism. 
Apart from enzyme activity, intermediate metabolites of protein (nitrogenous) catabolism 
are important indicators and are components of ATP resynthesis (Hochachka & Somero, 
1973, 1984, 2002). In order to identify the direction and intensity of protein anabolism, 
along with growth and production, the incorporation of marked molecules in proteins is 
used. This characterizes their biosynthesis. An important indicator of fish condition is the 
protein composition of blood serum (plasma), which includes proteins such as serum 
albumin and α-, β- and γ-globulins. Albumin and α- and β-globulins are involved in the 
transport of nutritive substances to tissues as well as in the transfer of Fe-containing proteins; 
γ-globulin is involved in immune function. Albumin also plays an important role in colloid-
osmotic regulation of the blood. Very significant indicators of condition are the lipoproteins 
transported by the blood, which comprise both low-density and high-density lipoproteins. 
The first indicate good and the second bad condition of organism.

In the second half of the last century, due to the development of chromatographic methods, 
the composition of protein fractions in tissues as well as enzymes began to be widely used 
in genetic investigations of intraspecific and interspecific differentiation including fish 
(Tsuyuki et al., 1965; Wilkins, 1967; Altukhov, 1974, 2003; Kirpichnikov, 1987; Lukyanenko 
et al., 1991; Dobrovolov, 1992).

2.5	 Nucleic acid-based indicators

Intensive studies of nucleic acids began in the second half of the twentieth century after the 
discovery of the double helix of DNA and the deciphering of the genetic code. In ecology 
the study of DNA and RNA structures resulted in an avalanche of investigations focusing 
on interspecific and intraspecific differentiation including that in fish (e.g., Jamieson, 1974; 
Clemmensen, 1994). Studies of nucleic acids not only constitute a major part of molecular 
biology but are also used in estimating condition and growth of fish. Although the evalua-
tion of these indicators requires complex and costly techniques, their use in specific life 
stages of fish (basically larvae and juveniles) makes them important in describing the 
condition of these key life stages that otherwise is difficult to estimate by other indicators. 
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The use of nucleic acid-based indicators has been strongly advocated during the last decades 
to study the condition and growth rates of ichthyoplankton (Fig 2.13) and juveniles, with 
special attention to the RNA/DNA ratio, the DNA/dry weight (DNA/DW) index and the 
DNA/carbon content (DNA/C) index (Bergeron, 1997; Buckley et al., 1999; Chícharo & 
Chícharo, 2008). Among these indicators, the RNA/DNA ratio has been the most widely 
used in fish, and was first proposed more than 40 years ago as a biochemical indicator of the 
condition of aquatic organisms. Since then it has been continuously explored and applied 
with success in microbial communities, invertebrates, and fish (Chícharo & Chícharo, 
2008). This index provides a measure of the synthetic capacity of the cell and usually 
correlates with nutritional status. The RNA/DNA ratio is based on the assumption that the 
amount of DNA, the primary carrier of genetic information, is stable under changing envi-
ronmental situations within the somatic cells of a species, whereas the amount of RNA 
directly involved in protein synthesis is known to vary with age, life stage, organism size, 
disease state, and changing environmental conditions. Thus larvae and juveniles in good 
condition tend to have higher RNA/DNA ratios than do those in poor condition (Chícharo & 
Chícharo, 2008).

The RNA/DNA ratio of juvenile fish of several species including sole (Solea solea) and 
flounder (Platichthys flesus) has also been used to evaluate habitat quality in coastal and 
estuarine nurseries (see for example Gilliers et al., 2004; Vasconcelos et al., 2009). Other 
fish species in which nucleic acid-based indicators have been used to evaluate the condition 
of their larvae are European anchovy Engraulis encrasicolus in the Bay of Biscay (Bergeron, 
2000), sardine Sardina pilchardus on the Iberian coast (Chícharo et al., 1998), cod Gadus 
morhua in the North Atlantic (Caldarone et al., 2003), and sole Solea solea on the Portuguese 
coast (Vinagre et al., 2008).

Other investigations have also proposed the use of multivariate analysis to assess larvae 
condition, with DNA, RNA, and protein content as input variables, for example in turbot 
Scophthalmus maximus larvae (Cunha et al., 2003). Nevertheless, some authors have raised 
concerns about the significance of RNA/DNA ratios as a descriptor of larval condition 
and its ecological significance (see Suthers et al., 1996; Suthers, 2000; Fonseca & Cabral, 
2007). For example, Gilliers et al. (2006) found that RNA/DNA ratios of sole appeared to 
be unreliable during a long-term study because they fluctuate greatly in the short term, 
while morphometric indicators seemed to be relevant, complementary indicators. Overall, 
it is widely accepted that RNA/DNA ratio is a short-term and fluctuating biochemical 

Figure 2.13  Larvae of a flatfish of the Soleidae family. Photo by Ana Sabatés.



Physiological and biochemical condition indicators: their relevance in fish metabolism  41

index that outlines the condition of the last days or weeks. On the other hand, morpho-
metric indicators such as rate of length and weight growth (as well as protein) integrate the 
entire juvenile life stage and in adults provide information over a longer time frame (Tanner 
et al., 2009).

Further, the RNA/DNA ratio has also proved to be a reliable index of nutritional condition 
when determined in the white muscle of adult fish (Chícharo & Chícharo, 2008). For 
example, this ratio has been used to estimate the nutritional condition of breeding European 
anchovies inhabiting the French coast of the Atlantic Ocean (Bergeron & Massé, 2012).

2.6	 Enzymes and some other indicators  
of intermediate metabolism

We have already mentioned in the previous sections some key enzymes that can be indica-
tors of the direction and intensity of metabolism. In the following chapter this list will be 
extended. Approximate indicators of catabolism may include the relationships between the 
initial and terminal values of these processes, calculated by their content in the body or 
tissues, for example total pool of free amino acids/total protein; total pool of free fatty acids/
total lipids; total pool of glucose/glycogen; and antioxidants. Antioxidants inhibit the 
negative effects of free radicals and peroxides and include carotenoids, α-tocopherol 
(vitamin E), glutathione and a number of enzymes such as catalase, superoxide dismutase, 
peroxidase, glutathione reductase, and glutathione S-transferase. All these substances 
characterize the organism’s capacity for resistance to damaging factors.

2.7	 Hormones and other biologically active  
substances

The content and activity of pituitary, thyroid and adrenocortical steroid hormones have been 
studied very intensively in fish. These hormones include thyroxine, somatotropin, prolactin, 
epinephrine (adrenaline), catecholamines, gonadotropins, etc. They control energy metabo-
lism, growth, fat accumulation, reproductive function, migrations, and so on. Study of these 
and other significant hormones will be reviewed later. It is essential to consider these 
hormones if we are to understand the processes regulating life-history stages, including 
annual cycles (maturation, feeding and migration) when hormones are important indicators 
of fish condition. Other substances (vitamins and provitamins, the antioxidants mentioned 
above, creatine phosphate as energy source during burst muscle effort) also play a significant 
roles in the evaluation of fish condition.
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3  Indicators of functional activity

3.1	 Significance of condition indicators of functional 
activity in fish

In this chapter we summarize the determination and application of condition indicators of 
functional activity in species, populations and single organisms, as this characterizes 
fundamental features of these living systems. The most important element of fish functional 
activity is natural mobility, which plays a primary role in their behavior, food acquisition, 
and intraspecific and interspecific competition. This feature is the foundation of biodiver-
sity, which we have considered in detail in earlier publications (Shulman & Love, 1999; 
Shulman & Tokarev, 2006). According to Severtsev (1934), in animals, including fish, 
differences in functional activity and natural mobility are based on two alternative strategies 
(Table 3.1). The first strategy involves the occupation of vast areas and high abundance, 
biomass and productivity; the second involves the occupation of narrow ecological niches. 
Naturally, both these strategies are accomplished as a result of essential differences in the 
level and intensity of metabolism and in differences in structure. Some examples are 
presented below.

Summary: Biological evolution and biodiversity are accomplished in fish, as in other animals, 
by two alternative metabolic strategies. The first strategy involves the intensification of energy 
metabolism, while the second involves considerable specialization. Fish species and popula-
tions which follow the first strategy occupy vast aquatic habitats and have excellent locomotion, 
abundance and productivity. Those species that follow the second strategy manifest delicate 
adaptations to narrow ecological niches and have more effective metabolism. All these features 
are well demonstrated by indicators of oxygen and food consumption, levels of energy stores 
(lipids, polyenic fatty acids and glycogen), and use of aerobic and anaerobic metabolic 
substrates.

Key words: biodiversity, locomotion, oxygen, food, lipids, fatty acids, glycogen
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Oxygen consumption can be used as a measure of the metabolism of fish. Table 3.2 shows 
values of the coefficient a (eqn. 2.3) for different Black Sea species at “standard” metabo-
lism (Belokopytin, 1993). As can be seen, these values correspond exactly with the degree 
of natural mobility of the species studied. Similar dependence was observed by Lipskaya 
(1974) for several Atlantic species in the tropics.

Differences in condition are revealed at the sub-organism level too. Oxygen consumption 
of the red muscle of Black Sea horse-mackerel Trachurus mediterraneus ponticus is higher 
than that of the same muscles of pickerel Spicara smaris and red mullet Mullus barbatus, 
fish that exhibit moderate activity (Stolbov, 1990). Red muscle is responsible for long-term 
(cruise) swimming. The red muscle of more active fish contains more mitochondria (energy 
factories of cell) than that of less active fish: 45.5% of total red muscle mass in most active 
fish (Johnston, 1982; Shindo et al., 1986; Savina, 1992), 25–31% in fish of moderate 
mobility (Kryvi et al., 1980; Johnston, 1981; Savina, 1992), and only 3–5% in slow-
swimming fish (Totland et al., 1981; Savina, 1992). Active fish have a more developed 
capillary system in red muscle to enhance oxygen transport via hemoglobin to mitochondria 
and a higher hematocrit (Blaxter, 1988). The muscles of active fish contain more cytochromes 
and higher cytochrome oxidase activity that facilitates electron transport in the respiratory 
chain, more intensive respiratory control (oxidative phosphorylation, i.e., P/O coefficient), 
and more Atkinson’s charge (the efficiency of energy utilization, which is accumulated in 
adenyl nucleotides) (Verzhbinskaya, 1953; Hochachka & Somero, 1977; Johnston, 1981; 
Demin et al., 1989; Savina, 1992; Soldatov, 2007). The dark color of red muscle is produced 
by the pigment myoglobin, which like cytochrome takes part in oxygen transport to tissues. 
Active Atlantic species like herring Clupea harengus and mackerel Scomber scombrus 

Table 3.1  Scheme of biological evolution and biodiversity

I  Expansion 
Development of enormous areas
High biomass and productivity 
High interspecific and intraspecific differentiation  

II  Specialization 
Occupation of narrow ecological niches 
High interspecific and intraspecific differentiation

Source: after Severtsev (1934) and Shulman & Tokarev (2006).

Table 3.2  Rate of oxygen consumption (mL/g per h) by different 
Black Sea fish

Species
Standard  
metabolism

Anchovy Engraulis encrasicolus ponticus 0.970
Horse-mackerel Trachurus mediterraneus ponticus 0.700
Mullet Mugil cephalus 0.572
Pickerel Spicara smaris 0.572
Red mullet Mullus barbatus 0.247
Whiting Merlangus merlangus euxinus 0.276
Scorpion fish Scorpaena porcus 0.084

Source: after Belokopytin (1993) and Shulman & Love (1999).
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contain more myoglobin than relatively less active cod and whiting (Love, 1997). Stocks of 
Atlantic cod which migrate have more dark-colored red muscle than those stocks which 
remain in one area throughout their lifespan. Tunas (Thunnus sp.), one of the most active 
fish groups in the world, possess an extra band of red muscle near the backbone in addition 
to a lateral band under the skin. Salmonidae also possess extra red muscle (Webb, 1971). 
The percentage content of red muscle in some fish families is as follows: Scombridae, 
26.1%; Carangidae, 18.3%; Clupeidae, 18.3%; Sparidae, 17.7%; Mugilidae, 14.5%; Gobiidae, 
4.5% (i.e., percentage steadily decreases with decrease in natural mobility). Emeretly 
(1990a,b) demonstrated a convincing link between succinate dehydrogenase activity in red 
muscle mitochondria of Black Sea fish and their locomotory activity. This enzyme is one 
of  the most important Krebs cycle enzymes, and controls the intensity of aerobic energy 
metabolism.

As we have noted, a significant feature of active fish is the extreme development of the 
circulatory system, manifesting as large blood volume, elevated number of red cells (eryth-
rocytes), and high concentration of the respiratory pigment hemoglobin (Egorova, 1968; 
Rambhasker & Rao, 1987; Tochilina, 1990) (Fig.  3.1). The oxygen-carrying capacity of 
hemoglobin is also increased (Table 3.3 and Fig. 3.2) (Klyashtorin, 1982; Soldatov, 2011). 
Because of this, threshold values of oxygen saturation in water for active fish are higher than 
those for slow-moving fish (Soldatov, 2011).

Active fish have higher stores of neutral lipids (triacylglycerols), the main energy 
“fuel” for swimming (Shchepkin, 1972; Shulman, 1972a, 1974; Shulman & Love, 1999) 
(Table  3.4 and Fig.  3.3). These comprise about 80% of total energy substrates 
(Belokopytin, 1993). The concentration of non-esterified fatty acids in blood and 
muscles is higher in active fish than in sluggish (slow-swimming) fish, evidence of 
more intensive lipid utilization (Shchepkin, 1972). Active fish have more oleic and 
palmitic fatty acids, which are used to provide energy for swimming, than fish that 
exhibit low activity (Krueger et al., 1968; Sargent & Henderson, 1980; Ackman, 1989; 
Yuneva et al., 1991). The same has been demonstrated for the antioxidative enzymes 
such as superoxide dismutase and catalase (Rudneva-Titova, 1994; Rudneva, 2011). 
Red muscle, which provides energy for long-term swimming in fish, is characterized by 
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Figure 3.1  Hemoglobin concentration in fish of different mobility. Pelagic active fishes: 1, Scomber 
scomber; 2, Trachurus mediterraneus; 3, Sprattus sprattus; 4, Engraulis encrasicolus. Demersal fish  
with moderate activity: 5, Spicara smaris; 6, Mullus barbatus. Bottom-dwelling fish with low activity:  
7, Blennius parvicornis; 8, Serranus paracentropsistis; 9, Merlangus merlangus; 10, Scophthalmus maximus; 
11, Scorpaea porcus; 12, Neogobius melanostomus. After Tochilina (1990) and Shulman & Tokarev (2006).
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more aerobic metabolism than white muscle, which has a more structural role in fish 
with high locomotory activity.

In contrast with the first strategy, the second strategy, which is peculiar to sluggish fish 
that exhibit low activity, is characterized by a low level of oxygen consumption (Table 3.2), 
low number of erythrocytes, and low content of hemoglobin (Fig. 3.1), as well as a low 
content of neutral lipids in muscles (Table 3.4). Classic examples of these fish are members 
of the Gadidae and Pleuronectidae. These fish have small amounts of red muscle (or generally 

Table 3.3  Oxygen-carrying capacity in blood of pelagic and bottom-dwelling 
species of Black sea fish

Species n P95 (hPa)* P50 (hPa)†

Pelagic fish
Liza aurata 9 72.7 ± 1.7 26.7 ± 0.8
Mugil saliens 7 74.9 ± 2.1 27.4 ± 1.3
Liza hamatocheila 8 65.8 ± 1.4 22.8 ± 0.7
Trachurus mediterraneus ponticus 72.8 ± 0.8 28.1 ± 0.8
Engraulis encrasicolus ponticus 10 82.6 ± 1.5 31.9 ± 0.8

Bottom-dwelling fish
Neogobius melanostomus 10 41.9 ± 2.6 17.4 ± 0.6
Mesogobius batrachocephalus 9 56.2 ± 1.6 18.2 ± 0.8
Zosterisessor ophiocephalus 7 63.4 ± 1.5 20.1 ± 0.9
Platichthys flesus 8 62.0 ± 1.3 22.7 ± 0.9
Scorpaena porcus 10 43.0 ± 0.9 14.8 ± 0.5

*P95, partial pressure of oxygen at which hemoglobin is 95% saturated.
†P50, partial pressure of oxygen at which hemoglobin is 50% saturated.
Source: after Soldatov (2011).
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Figure 3.2  Oxygen saturation in (a) scorpion fish Scorpaena porcus and (b) golden mullet Mugil 
auratus blood. After Soldatov (2011).
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none) and instead there is abundant development of white muscle. Fish that follow the 
second strategy have undergone metabolic compensation in order to exist in their chosen 
environment. For example, oxygen affinity to hemoglobin is higher than in active fish 
(Klyashtorin, 1982; Soldatov, 2002, 2011) (Table 3.3 and Fig. 3.2). Anaerobic metabolism 
prevails in slow-moving fish, which paradoxically allows short but very explosive (burst) 
activity (Black, 1958; Drummond, 1967; Prosser, 1991; Sumich, 1999). This is very impor-
tant for attack on prey by ambush fish (pike, scorpion fish, moray, etc.) or escape from 
predators (gobies, some coral fish, etc.). Thus these fish may be termed “sprinters” in con-
trast with the “stayers” (fish using the first strategy). All the enzymes of anaerobic metabo-
lism are very efficient, the main energy substrates of such fish being glycogen and glucose. 
Glycogen accumulates in the liver, where it can reach large concentrations (Plisetskaya, 
1975; Love, 1980). In general, the liver plays a more significant role in the metabolism of 
fish employing the second strategy (slow-moving fish), providing a quicker transformation 
of energy for ambush and escape from predators. These fish are able to survive in oxygen-
deficient environments by utilizing the catabolism of proteins and nitrogenous substrates, 
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Figure 3.3  Triacylglycerol content in white muscle of Mediterranean fish with different natural 
mobility: 1, Scomber scomber; 2, Scomberesox saurus; 3, Trachurus mediterraneus; 4, Diplodus 
annularis; 5, Gadus merlangus; 6, Scorpaena scrofa. After Shulman et al. (1978).
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including amino acids, to yield energy. It seems paradoxical, but protein accumulation in the 
liver (demonstrated by incorporation of 14C-labeled protein) is higher not in the more active 
pickerel but in the slower scorpion fish (Khotkevich, 1974). Liver antioxidative activity is 
higher in Gobiidae and scorpion fish than in pickerel (Rudneva-Titova, 1994; Rudneva et al., 
2011). The content of adenyl nucleotides (ATP, ADP and AMP) is higher in the liver of 
scorpion fish than in that of horse-mackerel (Savina et al., 1993).

Although we have described two alternative strategies of energy metabolism in fish, there 
is a third (intermediate) strategy. This strategy is followed by fish with moderate levels of 
locomotory activity (Sparidae, Myctophidae, Serranidae, Mullidae, etc.). The metabolic 
characteristics of these fish are transitional between the first and second strategies. Protein 
and nitrogenous compounds are the main substrates in energy catabolism (Bilinski & Jonas, 
1970; Walton & Cowey, 1982; Petrovich et al., 1996; Shulman & Love, 1999). Salmonids 
have a special interest in this situation as they undertake long-term migrations from the 
oceans and up the rivers (against the current) for spawning (Fig. 3.4). In the initial stage of 
this migration they utilize fat stores (Mommsen et al., 1980). In the second stage, when 
these stores have largely been depleted, the main energy source is protein (and metabolism 
may be partly anaerobic). During the final stage, spawning, when protein structures have 
been depleted, glycogen becomes the main energy store. Glycogen is also used intensively 
for overcoming rapids.

Energy anabolism, as opposed to expenditures, consists of energy accumulation in the 
form of stores or restoration of those which were mobilized. In fish, substances are stored 
in the form of neutral lipids and glycogen. Proteins do not form energy stores, but may be 
used as such during starvation (endogenous feeding). The most suitable indicators of lipid, 
glycogen and protein anabolism for energy needs are scale, intensity and efficiency of their 
conversion in individuals and populations. They can be defined by determining their abso-
lute increase and total energy equivalent and the activity of key anabolic enzymes.

The biodiversity of structural components plays a significant role in the energy metabo-
lism of fish. These components include proteins, polar and reserved neutral lipids, glycogen, 
and intermediate and especially terminal products of their catabolism (free amino acids and 
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Figure 3.4  Energy substrates during anadromous migration of sockeye salmon Oncorhynchus nerka. 
After Mommsen et al. (1980) and Hochachka & Somero (2002).
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fatty acids, glucose, etc.). Food consumption intensity (average annual diurnal ration) of 
active fishes is considerably larger than that of less active fish (Table 3.5). However, food 
consumption and efficiency has an inverse relationship, the same as occurs with the intensity 
and efficiency of energy metabolism in fish employing the first and second strategies. 
A clear illustration of the inverse relation between intensity of energy metabolism and food 
consumption is shown in Fig. 3.5, which compares erythrocyte and lymphocyte numbers 
(concentration) in the blood of different fish species. The first indicator characterizes the 
level of energy metabolism, the second one the level of food consumption. As Ugolev and 
Kuzmina (1993) reveal, lymphocytes are involved not only with immune function but also 
with intracellular digestion. These authors showed that proteolytic enzyme activity in 
sluggish fish is higher than in active fish. The level of blood serum proteins, transporting 
assimilated products, is also higher in slow-swimming fishes (Kulikova, 1967). Total polar 
structural lipids as well as different phospholipids (primarily phosphatidylcholine and 

Table 3.5  Mean annual daily intensity of food 
consumption (ration, % of body weight) and efficiency 
of its assimilation (K2) in Black Sea fish

Species Diurnal ration K2

Anchovy 10.17 2.4
Sprat 6.16 4.6
Horse-mackerel 5.43 5.6
Red mullet 1.55 25.1
Pickerel 1.74 13.9
Whiting 0.90 12.8

Source: after Shulman & Urdenko (1989) and 
Shulman & Tokarev (2006).
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Figure 3.5  Relationship between erythrocyte and lymphocyte numbers in blood of fish: Left column: 
active swimmers (Scomber japonicus, Scomberesox saurus, Belone belone, Trachurus mediterraneus 
mediterraneus, T. m. ponticus, Sprattus sprattus, S.s. phalericus, Alosa kessleri, Engraulis encrasicolus 
mediterraneus, E.e. ponticus, E.e. maeoticus, Myctophum affinis). Right column: sluggish swimmers 
(Scorpaena scrofa, Trigla lineate, Solea lascarius, Scophthalmus maeoticus, Pleuronectes flesus, Gobius 
melanostomus). After Tochilina (Rakitskaya) (1990, 1994) and modified by G.E. Shulman.
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phosphatidylethanolamine) provide important information about the differences between 
active and sluggish fish. This relates especially to polyunsaturated fatty acids. In Chapter 5 
(section 5.2.1) we discuss the significance of these fatty acids for adaptation to low temper-
ature. Shulman and Yakovleva (1983), Shulman and Yuneva (1990), and Shulman and Love 
(1999) consider that these structural components of membranes play an important role in the 
functional activity of fish, especially docosahexaenoic acid (DHA, 22:6 n-3) and eicosapen-
taenoic acid (EPA, 20:5 n-3). DHA and EPA have multifunctional roles, being involved in 
the structure of membranes, membrane ion transport, enzyme activity, and in the formation 
of biologically active substances such as prostaglandins and leukotrienes (Sargent, 1997; 
Kolakovska et al., 2003; Kolakowska, 2010). We have revealed a close relationship between 
the degree of locomotory activity of large taxons of marine fish and the presence of DHA in 
lipids (Shulman & Yakovleva, 1983) (Fig.  3.6). The same relationship was obtained for 
interspecific and intraspecific differences (Yuneva et al., 1990, 2011; Tornaritis et al., 1994; 
Shulman & Love, 1999; Kolakovska et al., 2003; Zlatanos & Laskaridis, 2007; Kolakovska, 
2010) as well as for many marine invertebrates (Yuneva et al., 1998). Thus we consider that 
not only temperature and other abiotic factors (salinity, oxygen deficiency, etc.) but also 
functional activity (primarily mobility) strongly influence the content of 20- and 22-carbon 
polyenic fatty acids, which contribute to the condition of cellular and intracellular mem-
branes. Unsurprisingly, omega-3 fatty acid content is higher in red muscle of active fish than 
in white muscle (Yuneva et al., 1991), but sluggish fishes have a very high content in liver, 
the most active metabolic organ in the body (Shulman & Yakovleva, 1983; Shulman & Love, 
1999; Tanakol et al., 1999). This provides compensation for those fishes with low metabolic 
activity in comparison with the most active swimmers. So omega-3 acids are exceptional 
adaptations for fish (and not only for them).
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It may seem paradoxical that the activity of some hormones is also higher in sluggish 
fishes. The scorpion fish has greater activity of adrenocorticoids, produced in the pituitary 
gland and which regulate catecholamine secretion, than the active horse-mackerel 
(Plisetskaya, 1975). However, these hormones are involved in carbohydrate mobilization 
(Plisetskaya, 1975). In addition, the activity of the thyroid gland is also higher in the sluggish 
scorpion fish than in horse-mackerel (Ivleva, 1989), and this is also evidence of metabolic 
compensation.

3.2	 Applied recommendations

The most useful metabolic indicators of fish functional activity and biodiversity may include 
the following:

●● level of oxygen consumption of whole fish under standard conditions;
●● intensity of enzyme activity of oxidative processes;
●● efficiency of oxidation (P/O ratio, Atkinson’s charge);
●● erythrocyte number and hemoglobin concentration in the blood;
●● oxygen partial pressure (Po

2
) and saturation (So

2
) (provides information about 

hemoglobin);
●● relationship between red and white muscle in body;
●● neutral lipid content (triacylglycerols, fats) in red and white muscle and liver;
●● the same for glycogen;
●● ammonium coefficient (O/N);
●● the concentration of terminal metabolic products in blood and muscles (glucose, lactate, 

free fatty and amino acids);
●● content of polyunsaturated omega-3 fatty acids (primarily DHA) in the polar lipids 

(phospholipids);
●● intensity and efficiency of food consumption;
●● level of key hormone activity (thyroxine, catecholamines, etc.).
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4  Fish condition and life history

4.1	 Fish condition during ontogenesis

The study of fish ontogenesis is concerned with different stages: embryonic; larval (when 
the post-embryo grows and develops, utilizing endogenous and exogenous supplies); 
juvenile (when the fry have not yet reached sexual maturity); maturation and sexual matu-
rity of adult fish; and senescence (Severtsev, 1934; Kryzhanovsky, 1949; Shatunovsky, 
1980). According to Shulman and Love (1999), ontogenesis is responsible for providing 
(i)  optimal quality of embryos and eggs, making them capable of survival en masse; 
(ii) optimal development to the beginning of exogenous feeding; (iii) maximum growth rate 
of fry, which speeds their rescue from predatory stress; (iv) genetically determined growth 
and development up to maturation; and (v) reproduction (the most prolonged stage in most 
species). Together with somatic increase, reproduction accounts for the total production of 
the population.

From a fish ecology perspective, even the final stages of fish (including aging and death) 
is important for a species, as it eliminates genetically depleted individuals from a population 

Summary: This chapter analyzes the importance of fish condition during the different stages  
of fish ontogenesis, from larval to juvenile phases, maturation and sexual maturity of fish, 
senescence and death. The impact of fish condition on life-history traits such as reproductive 
potential (fecundity, atresia, maturity, recruitment, etc.), growth and natural mortality is 
described. The consequence of these impacts for future population success is reviewed with 
examples from marine species worldwide. Annual changes in condition are reviewed, 
in particular during key periods such as pre-spawning, wintering, and migration. Other cycles 
in fish condition, such as daily rhythms, are also considered. Finally, the links between fish 
condition, abundance dynamics, fish behavior, and distribution are explored.

Key words: embryos, larvae, juveniles, maturation, reproduction, spawning, senescence, 
mortality, growth, wintering, migration
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and supplies the ecosystem with organic substances that arise from their decay. Beginning 
more than 50 years ago, a large number of studies have dealt with the physiological and 
biochemical features of the different stages of fish ontogenesis. Some remarkable examples 
are Needham (1963), Love (1970, 1980), Milman and Yurovitsky (1973), Shulman (1974), 
Neifach and Timofeeva (1977), Shatunovsky (1980), Cetta and Capuzzo (1982), Ozernyuk 
(1985, 2000), Novikov (1993, 2000), Sargent et al. (1993, 1999), Ronnestad et al. (2003), 
Silversand et al. (1996), Sivaloganathan et al. (1998), Shulman and Love (1999), and 
Kamler (2008).

Generally speaking, fish allocate the assimilated energy following rules determined by its 
physiological state, and the trade-off between survival, growth and reproduction (Gunderson, 
1997). While recruits and post-recruits usually focus on maximizing survival and growth, 
the adults focus particularly on reproductive activities. All these variables, which constitute 
important intrinsic factors that are linked to condition during the ontogenesis of fish, are 
developed in the following sections.

4.1.1	 Embryonic (eggs) and post-embryonic (larvae) 
development

Fertilized and developing eggs contain a full range of substances necessary for their 
development (the processes of oocyte maturation are discussed in section 4.1.3). In the yolk 
sac there are proteins, nitrogenous compounds and free amino and fatty acids, phospholipids 
and polyenic (unsaturated) fatty acids including omega-3 and omega-6 (the latter mostly in 
freshwater fish), cholesterol, some glycogen and glucose, and certainly nucleic acids, 
hormones, vitamins, and occasionally carotenoids, among other components.

Omega-3 fatty acids, for instance, promote successful hatching and viability of larvae 
(Golovachev, 1985; Yuneva et al., 1990). These acids are fundamental components of mem-
branes; they provide osmotic and electrolytic homeostasis, membrane permeability, and 
ionic transport (Adams, 1999). Docosahexaenoic acid (DHA) has a special significance for 
the development of larval activity and vision (Brown, 1994; Bell et al., 1995; Sargent, 
1995; Bell & Sargent, 1996). DHA accumulates in muscle, retinal rhodopsin, and brain 
tissue of larvae and provides better orientation during feeding. All polyunsaturated fatty 
acids, including eicosapentaenoic acids (EPA), are essential for marine fish and are called 
essential fatty acids (EFAs); they cannot be synthesized and are incorporated into the body 
only from food (Tocher & Sargent, 1984; Sargent et al., 1993; Sargent, 1995; Geurden 
et al., 1997). Not only do omega-3 acids constitute a large percentage of polyunsaturated 
fatty acids, but arachidonic acid 20:4 ω-6 is a precursor for prostaglandins and leukotrienes 
(Evans et al., 1997).

The fat content of eggs of fish of different species varies widely (0.85 to 22.34% of dry 
matter) and is almost exclusively composed of neutral lipids, including triglycerides and 
free saturated and monounsaturated fatty acids as well as cholesterol ethers and wax ethers 
in some species. These lipids supply energy to the eggs and also contribute to their buoyancy 
(Kulikova et al., 1996; Bergey et al., 2011). Fat content is sourced mostly (95%) from food 
(Worthington & Lovell, 1973; Docker et al., 1986).

In embryos and larvae, the processes of protein growth occur by synthesis of free amino 
acids: firstly they are utilized from yolk sac and then from food, rich in proteins and free 
amino acids (Conceicao et al., 1997). RNA increases during growth (Clemmensen, 1994). 
Phospholipids and polyenic fatty acids also play important roles in forming membranes. 
Neutral lipids (fats) and free fatty acids (14:0, 16:0, 18:0, 16:1, 18:1) have key significance 
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in supplying energy for the structural development of larvae (Blaxter, 1988; Ronnestad 
et al., 2003).

In the initial phase of embryogenesis, glycogen and glucose are used as energy substrates, 
whereas in the final phase proteins and nitrogen products are used (Kamler, 2008). All these 
processes are illustrated in Figures 4.1, 4.2, 4.3 and 4.4. The intensity of oxygen consump-
tion increases in eggs and larvae until larvae attain a definite length and then begins to 
decrease steadily until the end of adult life (Shamardina, 1954; Ozernyuk, 1985; Ronnestad 
et al., 2003; Fig. 4.5). During hatching, the endogenous energy stores in the oil globules and 
proteins and amino acids in the yolk sac are consumed (Kamler, 2008) and the RNA/DNA 
ratio decreases (Clemmensen, 1994). At this point, larvae have not learnt to obtain exoge-
nous food in the necessary quantity (Folkvord et al., 1996); this is a critical point because it 
largely determines larval mortality and hence recruitment, causing strong variability in the 
abundance, biomass, and productivity of fish populations (St John & Land, 1996; 
Sivaloganathan et al., 1998; Adams, 1999; Lambert & Thorsen, 2003; Kamler, 2008). The 
ratio of oxygen consumed to nitrogen excreted, the O/N ratio (also named ammonium coef-
ficient, AQ), changes during embryo and larval growth, especially after hatching, to favor 
the utilization of non-protein substrates (lipid and free fatty acids) compared with proteins 
and free amino acids (from 4–13% to 36–60%) (Sorvachev & Shatunovsky, 1968; Neifach 
& Timofeeva, 1977; Houlihan, 1991; Ronnestad et al., 2003; Sivaloganathan et al., 1998).

The role of carbohydrates in larval energy metabolism is significant too (Weatherlay & 
Gill, 1987; Finn et al., 1995). An important indicator of egg and larval condition, as Gosh 
(1985) showed, is the degree to which aerobic metabolism (oxygen consumption) dominates 
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Figure 4.1  Generalized scheme of protein and lipid changes during the development of embryos and 
larvae (endogenous feeding). Protein in 1, whole egg; 2, egg capsule; 3, yolk; 4, embryo; 5, total 
lipids. I, hatching from egg; II, transfer to mixed feeding; III, total yolk respiration; Max, maximal body 
mass. After Shatunovsky (1980), Sidorov (1983), Novikov (1993), and Shulman & Love (1999).
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Figure 4.3  Dynamics of glycogen content in eggs of Atlantic salmon Salmo salar. II, cell division; III, 
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anaerobic metabolism (glycolysis). The large quantity of antioxidative carotenoids in 
salmon eggs is probably related to the large amount of free radicals (Kamler, 2008).

4.1.2	 Juveniles

Juveniles and adults show a different energy allocation. In general, juvenile fish usually 
allocate energy primarily to growth; after maturation the adult fish primarily favors energy 
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storage for reproductive purposes. This pattern is observed for example in bluefin tuna 
Thunnus thynnus and albacore Thunnus alalunga (Goñi & Arrizabalaga, 2010; Chapman 
et al. 2011).

During the juvenile stage – the stage preceding sexual maturation – intensive protein 
growth promotes increase in weight and length. Growth has usually been associated with 
high levels of protein synthesis, following transformation of proteins (from the diet) into 
amino acids, and high RNA/DNA ratios (Hains, 1973; Shulman, 1974; Shatunovsky, 1980; 
Kurant et al., 1983; Weatherlay & Gill, 1987). Furthermore, the mineral skeleton develops, 
juvenile fins and swimming become more stable, and the ratio of red muscle to white muscle 
increases (Mosse & Hudson, 1977). Condition can change rapidly during early ontogeny as 
accumulation of energy substrates (neutral lipids in muscles of active fish and glycogen in 
liver of sluggish ones) occurs. However, this process is slower than protein growth due to the 
life strategy of the juvenile stage, when it is necessary for fish to reach a maximal size and 
weight as soon as possible before sexual maturity in order to be able to escape predators, 
obtain food, and be ready for intensive maturation. Clearly, fecundity is directly propor-
tional to fish size and weight. Hormones such as thyroxine, somatotropin and prolactin reg-
ulate the direction and intensity of metabolic processes from early ontogenesis onwards 
(Thackeray et al., 1989). For juvenile individuals, a few studies have shown that energy 
reserves usually decline during growth and energy accumulates only when growth is slow. 
For example, the relative condition index (I

H
) of wild juvenile snapper Pagrus auratus in 

the western Pacific Ocean peaks in autumn–winter (when growth is slow) and declines to a 
minimum in summer, when growth is fast (Fig. 4.6; Francis, 1997). In other studies the 
negative relationship between condition and growth is very weak (see for example Thackeray 
et  al., 2010). And even some condition indicators that apply to juvenile fish tend to be 
positively correlated with growth. For example, Fonseca and Cabral (2007) showed that 
higher RNA/DNA ratios were observed in larvae of species that showed faster growth, thus 
supporting the idea of higher metabolic investment for protein synthesis. Hence, higher 
larval and juvenile growth rates and condition indicators (mean RNA/DNA ratios and pro-
tein content) were associated with tropical and temperate fish species that occur in complex 
or variable habitats, respectively coral reefs and estuaries (Fonseca & Cabral, 2007).

4.1.3	 Sexual maturation

The mature stage of adult fish is the most prolonged in the life history of the majority of 
species, excluding freshwater eels and Pacific salmonids of the genus Oncorhynchus. During 
maturation, increases in the levels of lipids and proteins in the gonads are accompanied by 
increases in the levels of glycogen, vitamins, and other biochemically active substances 
(Shulman & Love, 1999). Furthermore, in addition to the processes in the reproductive tis-
sues themselves, changes in the quantity and composition of organic substances in the liver 
are important as a consequence of the increasing metabolism induced by the synthesis of 
reproductive products. Protein synthesis is switched, to a significant degree, from somatic 
production only to generative production. In anchovy and sprat from the Black Sea, the 
annual value of these two types of production is almost equal (Shulman & Urdenko, 1989). 
In Black Sea fish with a short life cycle, the duration of sexual maturity is threefold to five-
fold longer than the juvenile stage, whereas in fish with a long life cycle this relation may 
be 10- to 15-fold and more. Long-lived fish are able to reproduce up to the end of life. A 
significant feature of the adult stage is the great increase in fat accumulation in muscles of 
active fish and the glycogen accumulation in the liver of sluggish fish (Shulman, 1974; 
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Love, 1980; Shatunovsky, 1980; Shulman & Love, 1999). These reserves provide energy 
for somatic and generative growth. If the juvenile stage is characterized by a preponderance 
of protein synthesis over fat accumulation, the adult stage is characterized by the inverse 
relation. During growth of Black Sea anchovy and sprat, the relationship between somatic 
and generative production changes from 2 : 1 somatic : generative to 1 : 2. This is caused 
by the great increase in significance of reproduction for populations, and thus reproduction 
becomes more important than somatic growth. All these changes in fish physiology occur 
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because of a coordinated increase in neurohormonal activity of the hypothalamus, hypo
physis (pituitary gland), corticoids, and sex hormones (Fontaine, 1948, 1969; Gerbilsky, 
1956; Polenov, 1983; Jensen, 2003).

During maturation, sexual differences in condition appear. Even without dimorphism 
between females and males, females show higher intensive protein growth than males. 
This is because of the need to form female gonads. Therefore the range and intensity of 
reserve fat mobilization for protein biosynthesis is also higher in females. However, 
energy expenditure in males is higher during spawning due to more active locomotion. 
This difference in velocity of locomotion causes selectivity of eggs, embryos, and larvae 
(Oufiero & Garland, 2007). Interesting data were obtained by Bassova (2001) on the 
sexual differences in biochemical composition and content of the Black Sea turbot 
Pleuronectes platessa. She showed that dry matter, total lipids, triacylglycerols, and cho-
lesterol ethers in female livers are lower, but DNA, RNA, phospholipids and cholesterol 
higher than in male livers. Female red muscle has more polar lipids and less neutral 
ones. In female gonads (oocytes, Fig. 4.7) there are more triacylglycerols, 16:1 and 18:1 
fatty acids, cholesterol ethers, and RNA/DNA ratio. Glycogen content is higher in 
spermatocytes. All these differences reflect the functional significance of fertilization 
and preparation for embryo development. Similar data were obtained earlier (Henderson 
et al., 1984; Henderson & Almater, 1989). The biochemical composition of female and 
male gonads and sexual products depends on their destination: in females there are more 
structural and energy components, which culminate in spawning eggs. The presence of 
greater quantities of non-esterified fatty acids, glucose, and free amino acids in females 
indicates that enzyme activity, both anabolic and catabolic, is also higher in females (Liu 
et al., 1985). Indeed, 22:6 ω-3 content in warm-tolerant Black Sea anchovy is higher in 
summer, obviously due to more intensive energy and substance metabolism during 
spawning (Yuneva, 1990). A similar pattern was observed recently in anchovy and sar-
dina Sardina pilchardus (Fig.  4.8) in the Mediterranean Sea (Zlatanos & Laskaridis, 

Figure 4.7  Oocytes from Aspitrigla obscura in different development stages. Photo by M. Muñoz and 
S. Vila.
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2007). From our point of view, this is significant with regard to the “temperature para-
digm”: the relationship between the degree of lipid unsaturation and the temperature 
environment of fish (see Shulman & Love, 1999). Other than in demersal species, fish 
eggs contain more fats (triglycerides) in order to provide buoyancy. More phospholipids 
are present in mature oocytes and spermatocytes than in immature ones (Lizenko et al., 
1983; Sidorov, 1983). There are corresponding differences in the liver, which synthe-
sizes and transposes proteins (phosphoproteins, glycoproteins, lipoproteins, and vitel-
logenins), lipids, glycogen and other bioactive substances to the gonads (Plack et al., 
1961; Braekken & Boge, 1962; Jensen, 2003; Hutchinson, 2002; Kamler, 2008). In 
gonads, during the vitellogenesis and yolk phases of maturity (II and III) the main 
activity is synthesis of essential amino acids (alanine, leucine, serine, isoleucine, lysine, 
valine) and formation of structural lipids from free fatty acids. In phase IV (extensive 
growth) triacylglycerol accumulation prevails. Yolk proteins and lipids are mostly lipo-
proteins and vitellogenin (De Vlaming et al., 1984; Gershanovich et al., 1991; Hutchinson, 
2002). A proportion of the proteinases and other hydrolases of female fish are trans-
ferred into the yolk structures of the oocytes as vitellin (Houlihan, 1991), where they are 
activated as soon as fertilization has taken place (Nemova, 1991). Lysosomal cathepsin 
D has been studied by Nemova and Sidorov (1990). In spermatocytes aerobic metabo-
lism prevails over glycolysis (Gosh, 1985). Most of the proteins and lipids entering the 
gonads in phases II and III originate from food, but in phase IV they come mostly from 
the reserves in the liver and muscle (Wang et al., 1964). A greater quantity of water is 
accumulated in gonads during phase V, assisting in the oxidation of fatty acids and 
allowing easier spawning. The main form in which material is transported to the gonads 
is via lipoalbumins and lipoglobulins (Kulikova, 1967; Ipatov & Lukyanenko, 1979; 
Kychanov, 1981; MacKay et al., 1985). The accumulation of substances in the gonads is 
under the control of hormones such as gonadotropins, insulin, corticosteroids, and pro-
lactin (Fontaine, 1969; Plisetskaya et al., 1977; Donaldson et al., 1979; De Vlaming et 
al., 1984; Sautin, 1985; Jensen, 2003).

Figure 4.8  Sardines (Sardina pilchardus) caught in the Mediterranean Sea. Photo by S. Vila.
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In fish that spawn more than once a year, the dynamics of chemical composition differ 
between groups. The early spawners have an relatively and absolutely richer content of 
protein and lipid (Shulman & Love, 1999). During the post-spawning period, fatty degener-
ation of the gonads takes place. The main change in lipid deposition and withdrawal occurs 
with triacylglycerols, although small changes in phospholipids follow the same pattern, 
including alteration in the amount of cellular material. In most fish species, the formation of 
sexual products in the gonads uses up the internal stores of energy and plastic reserves. The 
situation is even more fraught in species spawning at the end of winter and which are really 
starving. The classic situation is exemplified by Atlantic cod, in which internal reserves are 
progressively depleted with each additional year of spawning until the fish is unable to 
recover from spawning and dies (Love, 1970).

4.1.4	 Senescence

During the process of aging, the ratio of protein to lipid in the body shifts toward lipid. The 
phenomenon is controlled by a change from somatotropin (a growth hormone) to prolactin, 
which controls lipid accumulation (Donaldson et al., 1979; Sautin, 1985). At the same time, the 
relative content of triacylglycerols as well as saturated and monounsaturated fatty acids increases. 
The activity of nucleases declines (Berdyshev, 1968), and the content of serum protein and the 
ratio of albumin to globulin decreases. On the other hand, the proportion of lipoproteins and non-
esterified fatty acids increases (Shatunovsky, 1980). Figure 4.9 convincingly demonstrates the 
steady decline in intensity and efficiency of food conversion for anabolic processes with the 
passage of time (Shatunovsky, 1980; Shulman & Urdenko, 1989).

During senescence there is continuous protein growth and fat accumulation (although 
not so intensive as earlier), which does not occur in many other higher vertebrates. This 
phenomenon is shown by many fish species, especially “fat” ones (Fig. 4.10) (Shulman, 
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1972a; Shulman & Love, 1999). The rates of consumption and assimilation of food, 
metabolic expenditures, and efficiency of conversion decrease considerably. The immune 
system of old fish becomes very weak (Mikryakov et al., 2001). According to Shatunovsky 
(1980), the fat content of fish at this stage drops markedly. This indicates a reduced ability 
to assimilate and synthesize lipids. Under unfavorable conditions, the anchovy and sprat of 
the Black Sea show a negative relationship between fatness and age (Minyuk et al., 1997). 
The synthesis of DNA and RNA decreases in old fish (Berdyshev, 1968). The activity of 
endocrine glands (thyroid, hypophysis, etc.) reduces (Khristophorov, 1975; Woodhead, 
1979). This disturbs fish homeostasis.

The lifespan of a given individual fish depends, among other factors, on its condition. 
Particular species of fish cannot be characterized by lifespan as there is so much variation 
between individuals (Zotina & Zotin, 1967; Nikolsky, 1974) and populations, and this is 
because the effect of ecological factors on lifespan is very strong. One factor is the ambient 
temperature. Atlantic cod in the North Sea mature in 3 years and die at around 8 years of age 
(Love, 1970), while in the Barents Sea they mature at 11 years and die at around 25 years. 
The fish Cynolebias adloffi lives for about a year at its usual temperature of 22°C, but lives 
much longer in water at 16°C (Liu & Walford, 1966). Food supply appears to be the most 
important ecological factor, governing individual variation in lifespan. It differs by several 
years in diadromous and freshwater forms of the smelt Osmerus eperlanus (Ivanova, 1980), 
normal and dwarf salmon (Krogius, 1978), and white fish (Reshetnikov, 1980). Poor food 
supply reduces nutritive consumption, and as a consequence reduces metabolic and growth 
rates, which finally results in premature maturation, aging, and death (Shatunovsky, 1980; 
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Shulman & Love, 1999). The opposite is observed when food is sufficient. Large forms of 
Baltic cod, herring and flounder mature later and live longer than their smaller counterparts. 
Variation in lifespan is obvious in comparison of the Black Sea small horse-mackerel and its 
hybrid with subspecies from the Mediterranean (Dobrovolov, 2000; Zuev & Melnikova, 
2005). Horse-mackerel is a predator and consumes large numbers of small fishes, including 
sprat juveniles, while the small form feeds on zooplankton. As a result large horse-mackerel 
live for up to 15 years and reach 50 cm in length and weigh more than 1.2 kg, while the small 
form lives for only 4–6 years and reaches 20 cm and weighs less than 200 g. Thus favorable 
environmental conditions allow fish to intensify their metabolism, increasing many 
functional abilities, including lifespan.

4.1.5	 Post-spawning death

In some species, disruption of homeostasis and death occur after spawning, when all or part 
of the population die. A classic example of unbalanced homeostasis is that of Pacific salmon 
(genus Oncorhynchus), which undergoes post-spawning mass mortality (e.g., Mommsen et 
al., 1980; Hochachka & Somero, 2002; Kaga & Sato, 2009). Death in Pacific salmon is a 
result of several factors related to each other: depletion of energy supply, decay of protein–
phospholipid structures and, particularly, the enormous quantities of corticosteroids 
discharged from the adrenal glands into the blood (Idler & Clemens, 1953; Ardashev et al., 
1975; Maksimovich, 1988). Kreps et al. (1977) and Tyurin and Gorbunov (1984) consider 
that this is caused by a stress reaction to the dramatic rise in free radicals in tissues. Dying 
mature Atlantic cod also have an abnormally high concentration of cortisol in their blood 
(Idler & Freeman, 1965). The cortisol itself appears to be the lethal agent, rather than a coin-
cidental presence. Robertson et al. (1963) implanted pellets of cortical hormone into imma-
ture rainbow trout so that cortisol was continuously released into the bloodstream. The fish 
lost weight, developed the characteristic infection of the skin, and died within 9 weeks.

Post-spawning mass mortality probably occurs in other fish. The round goby Neogobius 
melanostomus from the Sea of Azov may also be an example of energy depletion. After 
spawning the male fish guard the spawned egg clutch and do not feed, so that the males turn 
black, fat stored in the liver is used up, their endocrine system degenerates (Moiseeva, 
1969), and death ensues. Nevertheless, it must be considered in all cases that natural death 
is a genomically programmed phenomenon.

Contrary to Pacific salmon and round goby, in other fish species the adults spawn and live 
for many years. This is the case for Atlantic salmon Salmo salar as well as other anadromic 
migrants, such as sturgeons (Acipenseridae), and species belonging to Pleuronectidae and 
Cyprinidae. Furthermore, in many species, post-spawning death does not eliminate the 
entire population but mainly the senior age groups and the most severely exhausted fish of 
any age (Shatunovsky, 1980). For example, in the North Sea cod (Love, 1960) and the 
Barents Sea cod (Borisov & Shatunovsky, 1973), internal reserves are progressively depleted 
with each additional year of spawning (Love, 1960) until the fish is unable to recover from 
spawning and dies (Love, 1970). In the case of the round goby in the Sea of Azov not all the 
fish die after spawning: some restore their energy reserves and spawn the following year 
(Shulman & Love, 1999). Sex differences in energy depletion can also lead to different mor-
talities. For example, in the paternal mouthbrooding cardinalfish Apogon notatus from 
southern Japan, the deterioration of somatic condition during breeding was more severe in 
females, suggesting that selective mortality of females could be due primarily to the deple-
tion of their energy reserves (Okuda, 2001).
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4.2	 Impact of fish condition on life-history traits

Condition indicators can have major consequences on important fish life-history traits such 
as reproduction, growth, and natural mortality. These changes in life history may influence 
population dynamics and affect stock productivity and fishing yield. In particular, the 
productivity of some fish stocks appears to be especially prone to poor condition. For 
example, cod stocks in less productive ecosystems have low and highly variable condition 
values, whereas cod stocks inhabiting more productive ecosystems have high and relatively 
stable condition values (Dutil et al., 1999, 2003).

4.2.1	 Impact on reproductive potential

Maternal condition can have dramatic effects on the reproductive potential of fish, which 
is a key parameter for stock assessments. Inadequate reserves have been implicated in 
the reduced reproductive potential of several fish species through reduced fecundity and 
quality of eggs and larvae or delayed maturation. It has been known for decades that 
poor condition impairs normal maturation (Newsome & Leduc, 1975; Henderson & 
Nepszy, 1984; Watanabe, 1985; Heming & Buddington, 1988; Henderson et al., 1996). 
It seems that fish in poor condition invest in growth rather than gamete development 
(Yaragina, 2010).

Particularly important are the pre-spawning and spawning periods, when energy (fat) 
stores decrease up to 1% of body wet mass (Kleiber, 1961; Adams, 1999; Henderson et al., 
1988; Rosa et al., 2010). Excessive loss of energy and structure substrates during the pre-
spawning period, when these substrates are used for provision of generative maturation 
(vitellogenesis), worsens reproduction and recruitment (Semlitsch & Gibbons, 1988; Pringe 
et al., 2000). Therefore, fish condition can provide a valuable additional tool in assessing the 
reproductive potential of fish. Traditional recruitment models assume that the reproductive 
potential of a population is proportional to its spawning stock biomass. This implies that the 
survival rates of offspring are independent of parental age, body size or condition and that 
total relative fecundity and thus annual egg production per unit mass of adult stock are 
invariable over time. There is increasing evidence however that direct proportionality bet-
ween spawning stock biomass and reproductive potential might not exist because the latter 
may vary substantially among years and stocks depending on environmental and maternal 
variables. Information on the impact of these variables on the reproductive potential is there-
fore becoming increasingly important in order to understand the stock–recruitment relation-
ship, a crucial element in population dynamics and stock assessments. Therefore, in any 
future appraisal of stock–recruitment relationships (as the examples given in this section 
support) it is important to include information on stock composition and account for size 
and condition-related features of the spawning stock.

Inadequate energy reserves (particularly during the pre-spawning phase) have been 
implicated in the reduced reproductive potential of several fish species, such as cod (Gadus 
morhua) in the North Atlantic (Lambert & Dutil, 2000), European hake (Merluccius mer-
luccius) in the Mediterranean (Lloret et al., 2008) and the North Atlantic (Murua & Motos, 
2006), or bluemouth (Helicolenus dactylopterus) in the northwest Mediterranean (Muñoz 
et al., 2010). In capelin, accumulation of fat is critical for their survival during winter when 
food supply may be limited and for reproduction in mature fish. In general, capelin needs 
to reach a fat content (in muscle) of 7.5% by the end of the autumn feeding period to facilitate 
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the following year’s reproduction (Orlova et al., 2002). Poor copepod resources for capelin 
in certain years led to values below the level required for adequate reproduction the follow-
ing year (Orlova et al., 2009). In addition, there are examples from decapods showing the 
link between parental condition and recruitment, for example red shrimp (Aristeus anten-
natus) in the Balearic Islands (Carbonell et al., 2008).

In particular, neutral lipids have a special significance as energy for biosynthesis of 
generative products (e.g., Shulman, 1972a, 1974; Shatunovsky, 1980; Holdway & Beamish, 
1985). Triglyceride deficiency, for example, has a negative effect on gonad development 
and fecundity (Ackman, 1980; Adams, 1999). On the other hand, in those organisms relying 
on current energetic incomes (“income breeders”) such as octopuses, reproductive poten-
tial seems to depend more on the availability of contemporary food resources than on stored 
reserves (Quetglas et al., 2011). This is the opposite of “capital breeders,” where 
reproduction is fueled by stored reserves. Apart from all these marine species, there are also 
a large number of studies showing the impact of condition on the reproductive potential of 
freshwater fish species, such as the three-spined stickleback Gasterosteus aculeatus 
(Chellappa et al., 1989).

There are several ways in fish condition can be related to a population’s reproduction, and 
these are described in the following sections.
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Figure 4.11  Relationship between lipid content of gonads, diameters of oocytes, and relative 
fecundity in Black Sea horse-mackerel. After Shulman et al. (1970) and Shulman & Love (1999).
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4.2.1.1	 Fecundity

Several studies have shown that the higher the content of structural substances (nucleic acids, 
proteins, phospholipids, cholesterol) and energy substrates (neutral lipids and triglycerides, 
sometimes wax ethers, glycogen) in oocytes and spermatozoa, the better the fecundity and 
development of eggs and larvae (Hester, 1964; Cowey & Sargent, 1972; Shatunovsky, 1980; 
Adams, 1999; Gosh, 1985; Zhukinsky, 1986; Konovalov, 1989; Rowe et al., 1991; Brown & 
Taylor, 1992; Henderson & Tocher, 1987; Henderson et al., 1996). For example, there is a 
positive relationship between lipid content of gonads and relative fecundity in Black Sea horse-
mackerel (Fig. 4.11). Numerous studies have also shown that inadequate reserves are impli-
cated in reduced reproductive potential through lower fecundity of several marine species 
including North Atlantic cod (Kjesbu et al., 1998; Lambert & Dutil, 2000; Marteinsdottir & 
Begg, 2002), Japanese sardine Sardinops sagax (Morimoto, 1996), and Atlantic herring Clupea 
harengus (Kurita et al., 2003). In Atlantic herrring, for example, the relative fecundity showed 
a significant positive correlation with the muscle dry weight codition factor during the spawn-
ing season of this species. Thus, 27% and 16% of the variation in fecundity was explained by 
muscle dry weight condition factor and somatic condition factor (Kurita et al., 2003).

Laboratory experiments have revealed that fecundity and total egg dry weight are signif-
icantly lower in poor-condition female cod (Lambert & Dutil, 2000). Correlation and simu-
lation analyses suggest that, for the northeastern Arctic cod stock, the total lipid energy 
(TLE) contained in the livers of mature females is proportional to total egg production, 
making TLE a potential predictor of recruitment of that cod stock (Marshall et al., 2000). In 
this study, a significant linear relationship between TLE and recruitment to age 3 was 
observed, which was used to reconstruct and improve the stock–recruit relationship. Similar 
to this, a study about the eastern Scotian Shelf haddock (Melanogrammus aeglefinus) stock 
during the 1997 and 1999 spawning seasons showed that relative condition factor (K

n
) and 

HSI affected the fecundity of this species, even though consideration of these condition indi-
cators did not result in a dramatic improvement in the relationship between recruitment and 
stock reproductive potential of haddock (Blanchard et al., 2003).

Furthermore, low maternal condition has been linked to a high incidence of atresia in a 
number of species including herring (Ma et al., 1998; Oskarsson et al., 2002), sardine (Ganias 
et al., 2003) and cod (Rideout et al., 2000). Atresia is an involutive process common in the 
ovaries of fish and other vertebrates in which females may resorb mature follicles at different 
developmental stages. In general, insufficient nutrient stores before spawning can lead to an 
increased incidence of egg atresia in cod, and even to spawning failure in the severest cases 
(Marshall et al., 1998; Rideout et al., 2000). In the case of sardine (Sardina pilchardus) in the 
Mediterranean, early post-spawning females with 100% alpha-atretic oocytes had lower 
gonadosomatic and hepatosomatic index, compared with reproductively active females 
(Ganias et al., 2003). In addition, it has been observed in atypical atresic processes leading to 
cyst formation (swelling of the follicular envelope of oocytes) that cyst prevalence in European 
hake and cod, which varies inter- and intra-annually, decreases as condition factor increases 
and increases with length/age of fish (Figs 4.12 and 4.13; Domínguez-Petit et al., 2011). 
Since cysts would never be released, in practice the impact of cysts on fecundity would be 
comparable to the effects of atresia and therefore these results support the idea that fish in 
better condition display higher levels of viable eggs and reproductive potential. However, the 
relationship between relative intensity of atresia and fish condition has not always been found. 
For example, no clear relationship between relative intensity of atresia and muscle dry weight 
condition factor appeared in Atlantic herring Clupea harengus (Fig. 4.14; Kurita et al., 2003).



Figure 4.12  Incidence and significance of cystic structures in the ovaries of European hake: (a) annual mean of cyst prevalence;  
(b) monthly mean of cyst prevalence; (c) linear relationship between cyst prevalence and female length (y = −0.3557 + 0.0109x);  
(d) exponential relationship between cyst prevalence and female condition factor (y = 1.2251e–2.7949x). From Domínguez-Petit et al. (2011).
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Figure 4.13  Incidence and significance of cystic structures in the ovaries of Atlantic cod: (a) annual mean of cyst prevalence;  
(b) mean of cyst prevalence by female age (y = 0.1998 + 0.1403x); (c) logistic relationship between cyst prevalence and female length 
[y = e(−4.247 + 0.052x)/1 + e(−4.247 + 0.052x)]; and (d) linear relationship between cyst prevalence and female condition factor 
(y = 0.3641 – 0.1509x). From Domínguez-Petit et al. (2011).
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The link between condition and fecundity may not be apparent throughout the spawning 
season but only at particular times, as the investigation of bluemouth (Helicolenus dactylop-
terus) in the Mediterranean has shown (Muñoz et al., 2010). The relative condition (K

n
) of 

bluemouth had a significant effect on fecundity at the onset of spawning, when potential 
fecundity is determined. At that particular moment of the spawning season, when females 
display ovaries with hydrated oocytes but without post-ovulatory follicles, the relationship 
between the estimated fecundity (F) of females of H. dactylopterus and the relative condition 
factor K

n
 becomes significant. Therefore, only final potential fecundity fixed prior to spawn-

ing is dependent on the condition of the female at that specific moment. In the same sense, 
Nunes et al. (2011) found a minor effect of body condition on batch fecundity of sardine. 
The authors argued that when fecundity data were collected during January and February, 
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sardine condition was commonly at a minimum level and therefore one cannot rule out the 
possibility that a stronger relationship would exist between batch fecundity and sardine 
body condition at the beginning of the spawning season when condition is usually maximal 
(Nunes et al., 2011). This example again shows that the relationship between condition and 
reproduction can only be found during particular times of the annual life cycle of fish and 
highlights the complex relationships between condition and reproduction. On the other 
hand, it has been suggested that the sardine uses not only capitalized (stored) energy to 
support egg production, but as the reproductive season progresses it could also rely directly 
on current income (from food) (Ganias, 2009), the relationship between body condition and 
reproductive investment (fecundity) becoming weaker.

Nevertheless, other studies have failed to detect any effect of condition on fecundity and 
claimed there is need for greater statistical clarity in analyses of the effects of maternal 
condition on fecundity in fish (Koops et al., 2004).

4.2.1.2	 Skipped spawning

Although the traditional view of iteroparity in fish is one of an annual reproductive cycle 
that culminates each year in spawning, more recently the potential for mature fish to skip 
spawning – which refers to a failure to spawn in a given year that does not interfere with 
the ability to spawn in subsequent years (Rideout et al., 2005) – has been well recognized. 
Skipped spawning is more common than previously thought (Fig. 4.15; Rideout & Tomkiewicz, 
2011). For example, in the years 1999–2004, suppression of reproduction via mass atresia of 
vitellogenic oocytes occurred in 8.4–55.6% of potential female cod spawners in Newfoundland 
waters (Rideout & Rose, 2006). Skipped spawning is most commonly attributed to deficient 

Figure 4.15  Examples of  “abnormal” histological observations on fish gonads: (a) sterile Atlantic cod 
Gadus morhua ovary with no oocytes; (b) intersex gonad of eelpout Zoarces viviparus with oocytes 
interspersed throughout spermatogenic cell stages; (c) Atlantic cod ovary with follicular cysts (C); 
(d) Atlantic herring Clupea harengus testis with adipose tissue (A); (e) ovary of a Greenland halibut 
Reinhardtius hippoglossoides with protozoan parasite (P) infection; and (f) ovary of an Atlantic cod that 
skipped spawning due to mass atresia of oocytes. From Rideout & Tomkiewicz (2011).
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diet and poor nutritional condition (reviewed by Rideout & Tomkiewicz, 2011). New 
research continues to support this generalization. For example, the high incidence of skipped 
spawning was in particular related to the size and condition of North Atlantic herring 
(Engelhard & Heino, 2005). The authors found that the mean length, weight, and condition 
index of first-time herring spawners had significant effects on the fractions of fish skip-
ping reproduction the year after. If first-time spawners had larger body lengths, higher body 
weights, or higher condition indicators, then skipping of reproduction was less likely to 
occur in the following year (Engelhard & Heino, 2005). According to the authors, trade-offs 
between current and future reproduction, growth and survival imply that participation in 
spawning will only pay off in terms of fitness when herring are sufficiently large and in suf-
ficiently good condition. Thus, it seems that young adult herring, which owing to their small 
size rely heavily on condition, often need an extra year after first reproduction to regain the 
energy stores required for reproduction, in contrast to older fish (Engelhard & Heino, 2005).

Recent research on Atlantic cod also indicates that skipped spawning is linked to 
poor condition. For cod off Newfoundland and Labrador (northwest Atlantic), models of 
spawning probability based on relative liver condition suggested that female cod in poor 
condition were more likely to spawn than fish of equal condition (Fig. 4.16; Rideout et al., 
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Figure 4.16  The probability of spawning based on relative liver condition for female cod Gadus 
morhua off Newfoundland and Labrador (NAFO areas 3KL, 3 M and 3Ps). (a) Liver condition is 
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fish from all areas combined and including an area effect in the model. For (b) 3KL, (c) 3 M, and (d) 3Ps, 
liver condition is expressed relative to fish from the respective areas, and the probability of spawning is 
modeled separately for each area. From Rideout et al. (2006).
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2006). Hence, the relative liver condition had the largest influence on the probability of spawn-
ing in Newfoundland and Labrador cod (>17% of the probability of spawning was explained 
by the relative liver condition, whereas the rest of the factors explained less than 2% of the 
probability). Furthermore, there was a significant area effect on the relationship between the 
liver index and the predicted probability of spawning (at very low values of liver index, fish in 
particular areas were more likely to spawn at low liver index than fish from other areas). Also 
Yaragina (2010) found that gamete development of northeast Arctic cod could be interrupted 
by poor liver condition. Additional tools for examining diet and condition are now available 
for use in exploring aspects of reproductive biology. For example, using white muscle δ13C 
signatures Rideout and Rose (2006) demonstrated that medium-sized Atlantic cod feeding on 
capelin Mallotus villosus were less likely to skip spawning than individuals feeding on shrimp.

According to Rideout and Rose (2006), suppressing reproduction in times of poor nutri-
tional condition can increase an individual’s likelihood of surviving to spawn in multiple 
subsequent years. The longer the reproductive lifespan of a species, the more likely it is to 
suppress reproduction in times of poor condition. In long-lived species such as Atlantic cod, 
suppressing reproduction when energy reserves are such that spawning may compromise 
survival can actually increase lifetime reproductive output (Rideout & Rose, 2006).

4.2.1.3	 Egg quality and larval survival

Low maternal condition has been linked to lower egg quality, whether it is lower total egg dry 
weight as occurs in cod (Lambert & Dutil 2000; Ouellet et al., 2001) and Atlantic herring (Kurita 
et al., 2003); a smaller egg diameter as happens in cod (Ouellet et al., 2001), haddock 
(Trippel & Neil, 2004) and Japanese sardine (Murimoto, 1996); or smaller lipid content in the 
ovary as occurs in Japanese sardine (Murimoto, 1996) and European hake (Lloret et al., 2008). 
A smaller lipid content in the ovary has been linked to a smaller egg diameter (e.g. in Black Sea 
horse-mackerel; Fig. 4.11). For hake, Lloret et al. (2008) showed that there were significant 
positive relationships between the relative lipid content in the liver and ovary of female pre-
spawners in the Mediterranean (Fig. 4.17). Good-condition female pre-spawners, namely those 
with higher relative lipid reserves in their livers, had higher relative lipid percentage in their 
ovaries than poor-condition ones, suggesting that better-conditioned females had higher repro-
ductive potential. In fact, a close connection has been revealed between the levels of structural 

Figure 4.17  Linear relationship between relative lipid content in the ovary and relative lipid content 
in the liver of European hake Merluccius merluccius female pre-spawners in the northwest 
Mediterranean. From Lloret et al. (2008).
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and energy components in the reproductive products of mature fish at spawning, primarily 
females (Shatunovsky, 1980; Krivobok, 1964; Shulman, 1972a, 1974; Holdway & Beamish, 
1985; Shatunovsky & Rychagova, 1996; Rainuzzo et al., 1997; Lambert et al., 2003; 
Domínguez-Petit & Saborilo-Rey, 2010). The mechanism of is clear: proteins, lipids, gly-
cogen, and other substances from muscles and other tissues of adult fish (e.g., plasma triac-
ylglycerols, cholesterol, total proteins) are transformed in the liver to reproductive products 
(Shulman & Love, 1999).

The nutritional condition of fish larvae is considered an important factor affecting recruit-
ment fluctuations of the population, either directly by inducing mortality or indirectly by 
lengthening the duration of larval life and exposure to predators (Ferron & Leggett, 1994; 
Bergeron, 2000; Ferron, 2000). In particular, Ferron and Leggett (1994) reviewed the use of 
different condition indices (morphometric, histological and biochemical) in fish larvae 
taking into account field and laboratory experiments, and provided specific recommenda-
tions that need to be considered by ichthyoplanktologists when studying the condition of 
this particular life stage of fish. Larvae in better condition are presumably less likely to die 
of starvation or predation on average and thus contribute proportionally more to the numbers 
at recruitment. Hence, the larvae produced by fish in poor condition may be smaller or have 
higher specific gravity, and are thus less likely to survive (Marteinsdottir & Steinarsson, 
1998; Saborido-Rey et al., 2003). In this sense, Ware (1975a) found that when larvae are 
deprived of food, big larvae resulting from bigger eggs survive longer than small larvae 
hatched from smaller eggs. Kamler (1992) revealed that larval survival depends on neutral 
lipids accumulated in the egg, and Thorpe et al. (1984), Brown and Taylor (1992) and 
Kamler (1992) demonstrated a positive correlation between the viability of offspring recruits 
and total concentration of lipids in eggs of several species. Finally, Rainuzzo et al. (1997) 
and Domínguez-Petit and Saborido-Rey (2010) showed that the level of neutral lipids in 
females is responsible for fecundity, fertilization, hatching and, to a considerable degree, 
survival of larvae in the earliest post-embryo stages. All these examples show that ovarian 
lipids are a primary source of energy at the larval stage before first feeding, and therefore 
will influence larval condition and survival (Rainuzzo et al., 1997).

There are many examples showing how low maternal energy reserves can lead to a decrease 
in egg quality and larval survival. Two examples are the sardine Sardina pilchardus in 
northwest Spain (Riveiro et al., 2000) and the Icelandic cod Gadus morhua. For Icelandic 
cod, Marteinsdottir and Steinarsson (1998) revealed that Fulton’s K condition factor of 
females was positively correlated with the size of their eggs. Hence, the relative production of 
large good-quality eggs by females of different sizes and conditions is likely to be an impor-
tant component in the total production of viable offspring by the Icelandic cod stock. 
Furthermore, a positive relationship was detected between egg size and some larval viability 
parameters, including age at first feeding, successful development of a swimbladder, and 
specific growth rates during the first 15 days after hatching (Marteinsdottir & Steinarsson, 
1998). Also in cod, mean larval specific gravity (larval buoyancy) was negatively correlated 
with female Fulton’s K condition factor at different larval developmental stages (Fig. 4.18; 
Saborido-Rey et al., 2003). Hence, larger eggs produced by females with high condition 
factor produce larvae with a bigger yolk sac and with a lower specific gravity, which can 
distribute at shallower depths where the chance for more favorable conditions is greater, both 
in terms of physical environment and food availability for future larvae (Saborido-Rey et al., 
2003). Overall, these results reveal that the viability of cod larvae is related to attributes of the 
spawning females and that this information is important to our understanding of stock–
recruitment relationships.
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Better larval condition ameliorates survival and development to juveniles and recruit-
ment (Schmidt-Nielsen, 1984; Thorpe et al., 1984; Post & Evans, 1989; Wagner & 
Congleton, 2004). In this regard, lipids play a key role, even though carbohydrates and 
proteins, which also contribute to energy reserves of eggs and larvae, contribute to a minor 
extent. Higher lipid content in eggs and larvae makes egg and larvae more resistant to unfa-
vorable external conditions (Gall, 1974; Ware, 1975a; Thorpe et al., 1984; Docker et al., 
Docker et al., 1986; Brown & Taylor, 1992; Kamler, 1992). Unfavorable abiotic factors 
include inappropriate temperatures, oxygen deficiency, and high levels of water pollution 
(Wedemeyer et al., 1984). In particular, neutral lipids can provide the energy necessary to 
resist all these anomalous factors. In this case, sensitivity to these negative factors increases 
(Shulman & Love, 1999). Unfavorable biotic factors include food deficiency and exis
tence of predators, parasites and diseases. In particular, food deficiency has great signifi-
cance for larvae during their shift to external feeding (Henderson et al., 1988; Thompson et al., 
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Figure 4.18  Relationships between mean cod larval specific gravity and female mean Fulton’s 
condition (K) at different larval developmental stages. Note that the stage 5 plot has different scaling on 
the y-axis. From Saborido-Rey et al. (2003).
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1991). Mass mortality occurs during this stage but higher energy stores can reduce this 
mortality strongly. Further, higher lipid content in eggs fosters the ability of larvae to 
self-feed earlier and longer than those larvae with fewer energy stores (Brown & Taylor, 
1992). Larger larvae can better locate and hunt their prey, as well as escape from predators 
(Prosser, 1991; Brown & Taylor, 1992).

In particular, polyenic fatty acids play an important role in successful egg and larval 
development (Sargent, 1978; Sargent & Henderson, 1980; Walton & Cowey, 1982; Yuneva  
1990), as higher levels of polar lipids provide higher metabolic activity of cellular and sub-
cellular membranes. Higher content of DHA affects the development of sense organs and 
supports nerve function (Sutharshiny & Sivashanthini, 2011). This, together with higher 
content of neutral lipids, promotes successful search for food and escape from predators. 
The investigations by Brown (1994), Sargent (1995), Bell et al. (1995), and Bell and Sargent 
(1996) showed that 22:6 ω-3 is accumulated in rhodopsin of larval retina and improves 
vision, contributing greatly to survival of larvae.

However, not all studies support the hypothesis that larvae in better condition are less likely 
to die of starvation or predation on average and thus contribute proportionally more to the 
numbers at recruitment. Suthers (2000) stated that the ecological relevance of various 
condition indicators used for fish larvae still needs further investigation. According to Suthers, 
future studies should consider in situ small-scale spatial and temporal studies that link 
mortality and condition of cohorts. We must consider however that on many occasions the 
quality of eggs and larvae cannot offset the adverse abiotic and biotic conditions. For example, 
survival of eggs and larvae of pelagic Black Sea fish depends significantly on the temperature 
regime during the spawning period (Dekhnik, 1979). Finally, the food supply of larvae plays 
a significant role in their survival (Zaika, 1983) and consequently in recruitment.

Overall, a continuous linkage has been established between quality of producers, 
quality of reproductive organs, quality of fecundity and fertilization, quality of eggs and 
hatching, quality of larvae, recruitment value and survival. A sound example of such 
linkage is the work by Yuneva et al. (1990), obtained during artificial interbreeding of 
Pacific gorbusha Oncorhynchus gorbuscha (Fig. 4.19). The content of DHA in triglycerides 
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Figure 4.19  Relationship between (a) egg and (b) larval survival and 22:6 ω-3 content in 
Oncorhynchus gorbuscha female. From Yuneva et al. (1990) and Shulman & Love (1999).
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of white muscle of females is proportionally related to the survival of eggs and larvae. 
High levels of neutral lipids are necessary for smoltification and wintering survival of 
Pacific salmon juveniles (Pavlov et al., 1994). Apart from the direct influence of spawn-
er’s quality on egg and larval quality, there is also an indirect effect: the better the condition 
of the spawner (higher levels of structural and functional constituents and higher protein 
biosynthesis), the faster it grows. A higher growth rate and increased fish mass leads to an 
increase in fecundity.

Lipid utilization starts early during maturation. Several studies have shown that poor 
condition cannot support normal maturation (Newsome & Leduc, 1975; Watanabe, 
1985; Heming & Buddington, 1988; Henderson & Nepszy, 1994; Henderson et al., 
1996), with decrease in fecundity related to oocyte resorption and follicular atresia 
(Hester, 1964). Low lipid content negatively affects the immune system of fish (Gurr, 
1983) and thus parasites increase in liver and muscles (Graham & Laurs, 1982; Adams, 
1999). Male Atlantic salmon stop maturing when mesenterial fat falls to a critical level 
(Rowe et al., 1991): salmon must have a minimum of 3% fat wet weight for normal 
reproduction the following fall. In a similar manner, Arctic char Salvelinus alpinus 
must also have a critical level of lipids at maturation (Rowe et al., 1991). These effects 
are species-specific: for Clupeidae it is carcass lipids, i.e., muscle fat (Love, 1970; 
Shulman, 1972a, 1974); for flatfishes and Gadidae it is liver fat (Love, 1970; Cowey & 
Sargent, 1972); for Salmonidae (Rowe et al., 1991) and many Centrarchidae (Adams, 
1999), Persidae and Cyprinidae (Henderson et al., 1996) it is mesenterial fat. An 
exception is plaice (benthic species), for which carcass is the main source of lipids 
(Adams, 1999). Some representatives of Scorpaenidae, such as scorpion fish and 
yellowtail rockfish, use liver and mesenterial fat as the source of ovarian development. 
An example of the effects of inadequate condition is shown by the mass death of 
maturing female gizzard shad (Dorosoma sp.) in late spring during the mid 1980s as a 
result of severe starvation (Adams, 1999). Shad, which spawn in spring, postponed 
spawning to the fall: as a result of this postponement, mass death of fish was observed 
during the fall, which is usually the season where energy accumulation occurs. This 
postponement did not allow fish enough time to accumulate energy. A significant role 
in fish condition and mortality is played by stress, mediated by the neuroendocrine 
system (hypothalamus–pituitary–thyroid–interrenal) (Schrek et al., 2001; Kassahn 
et al., 2009).

Occasionally other factors rather than fish condition can be more important for 
reproduction. One is temperature. For example, Domínguez-Petit and Saborido-Rey (2010) 
showed that spawning success of European hake Merluccius merluccius depends more on 
food supply and temperature than on energy reserves. In striped bass Morone saxatilis, 
maturation worsens when temperature increases (Content, 1987). In this case, especially 
during oxygen deficiency, sensitivity to diseases and parasites increases (Eure & Esch, 
1974). American shad Alosa sapidissima, which migrates to rivers, loses fat at a faster rate 
near the end of migration, due to higher temperatures, than at the beginning of migration 
and therefore survival of these fish is low (Glebe & Legget, 1981). Another stressor for lipid 
content in muscles and liver, as shown in sea bass Dicentrarchus labrax, is salinity (Roche 
et al., 1940). In smallmouth bass Micropterus dolomieui, hypo-oxidant medium as well as 
low pH decreases biosynthesis of phosphatidylcholine and phosphatidylethanolamine 
(Cunnington & Shuter, 1986). In the same species, low pH affects the acidophil system 
(Kwain et al., 1984).
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4.2.1.4	 Ovary weight and gonadosomatic index

Ovary weight and gonadosomatic index (GSI) have been used as indicators of reproductive 
output or reproductive investment, with both measures varying on an annual basis in many 
fish species. For example, batch fecundity in European hake is positively related to ovary 
weight and GSI and therefore both measures could be potentially used as a fecundity index 
of hake (Murua & Motos 2006). Ovary weights were positively correlated with interannual 
variations in condition of Atlantic herring (Clupea harengus) during the period 1970–1990 
in the Newfoundland area (Winters & Wheeler, 1994). Furthermore, there appeared to be a 
highly significant positive correlation between ovary dry weight and muscle dry weight 
condition factor in the later maturation cycle of Atlantic herring (Fig. 4.20; Kurita et al., 
2003). At a seasonal scale, the inverse relationship between GSI and condition in many fish 
species indicates that the energy that is stored in the months by fish in resting phase is then 
utilized to support the production of egg batches during the spawning period (e.g., sardine 
in the northeast Mediterranean; Ganias et al., 2007).

4.2.1.5	 Maturity

Another way in which fish condition can be related to a population’s reproductive potential 
is trough maturity. The probability of a fish being an adult tends to increase with age and 
size, but it can also be influenced by other factors such as fish condition. The relationship 
between condition and the probability of being mature (adult) has been well documented for 
a number of marine species including cod Gadus morhua (Marteinsdottir & Begg, 2002; 
Morgan & Lilly, 2006), American plaice Hippoglossoides platessoides (Morgan, 2004), and 
turbot Scophthalmus maximus (Bromley et al., 2000). Thus, for example, Marteinsdottir and 
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Figure 4.20  Changes in relationships between ovary dry weight standardized to 34 cm TL fish and 
muscle dry weight condition factor (100 × muscle dry weight/TL3) through the maturation cycle (July 
1998 to February/March 1999) for Norwegian spring spawning herring of 32–37.5 cm TL. Each line 
shows the linear regression line for each month. From Kurita et al. (2003).
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Begg (2002) found an increased proportion of mature Icelandic cod at a given size or age for 
those fish that were in better condition. Similarly, Morgan and Lilly (2006) found that for 
Flemish Cap female cod there was a significant effect of the liver condition index on the 
probability of being an adult, after accounting for the effects of age and length. However, the 
relative condition index of Flemish Cap cod accounted for only a small portion of the devi-
ance (1%) compared with the deviance accounted for by the combined effects of age and 

Figure 4.21  American plaice (Hippoglossoides platessoides) from the Atlantic coast of Canada. 
Estimated proportion of females mature at age 8 years and length 33 cm calculated from the fitted model 
for each population of American plaice. The proportion mature is calculated across the observed range 
of (a) relative liver condition and (b) relative body condition in each population for a female aged 8 and 
33 cm long. From Morgan (2004).
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length (69%). For males there was also no significant effect of relative liver condition on 
the probability of being an adult (Morgan & Lilly, 2006). Bromley et al. (2000) found 
that a low food ration in adolescent turbot could lead to failure to mature. Morgan (2004) 
found a significant positive effect of the relative condition index and the relative condition 
factor on the probability of being a mature female American plaice Hippoglossoides 
platessoides (Fig. 4.21). However, the additional variation explained by female condition 
was small when compared with the combined effect of age and length. Furthermore, 
neither relative liver condition nor relative body condition significantly affected the 
probability of male American plaice being mature (Morgan, 2004). Furthermore, 
Yaragina (2010) concluded that it seems likely that the condition factor of northeast 
Arctic cod in 1984–2006 and the energy content of the liver in particular will affect the 
chance of becoming mature.

All these examples support the hypothesis that variation in fish condition will have a direct 
impact on the spawning stock biomass of a population through differences in the maturation 
schedule of cohorts, particularly the females, with differing condition (Morgan, 2004).

4.2.1.6	 Recruitment

Because condition is linked to reproductive variables such as fecundity, maturity or egg 
quality, condition of spawners can be related to recruitment success. In this sense, positive 
associations of maternal condition with recruitment have been documented in several 
species from the North Atlantic, including haddock Melanogrammus aefleginus (Marshall 
& Frank, 1999), cod Gadus morhua (Marteinsdottir & Begg, 2002), and anchovy Engraulis 
encrasicolus (Bergeron & Massé, 2012). In this sense, special attention should be given to 
anomalous low adult condition values since they may precede a recruitment failure, as could 
have happened with cod in the northern Gulf of St Lawrence during the early 1990s (Lambert 
& Dutil, 2000). The condition of spent females in this stock indicated that reproductive 
potential and possibly recruitment may have suffered from that situation and could have 
contributed to the failure of this stock to recover despite the moratorium on commercial 
fishing (Lambert & Dutil, 2000). In anchovy from the French coast of the northeast Atlantic 
Ocean, Bergeron and Massé (2012) demonstrated that the annual recruitment of this pelagic 
species shows a tight relationship with the mean values for the RNA/DNA ratio determined 
in the parent fish during the previous breeding season (Fig. 4.22). In the case of red shrimp, 
there was a significant and positive relationship between the condition of adults during the 
months prior to spawning and the number of recruits in the following year (Fig.  4.23; 
Carbonell et al., 2008). This relationship was stronger when only red shrimp male condition 
was considered, suggesting that males have an important role in the reproductive potential 
of this species. Results suggest that recruitment of red shrimp in the northwestern 
Mediterranean is influenced by the condition of adults during the months prior to spawning. 
Recruitment is higher when pre-spawning individuals are in good condition, i.e., have a 
higher body weight for a given carapace length. The relationship between the condition and 
recruitment of red shrimp is stronger when only the condition of males is considered, depict-
ing, in all likelihood, the importance of males during the whole reproductive process 
(Carbonell et al., 2008). Overall, these results suggested that condition of red shrimp, 
particularly males, is an important aspect for the reproductive and recruitment success of 
this species.

Further, in the Portuguese coast, the sardine energy density in a given year explained 
more than 50% of the variation in the annual catches of the following year, indicating 
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that adult energetic condition during spawning is partially translated into the fishery through 
parental effects in recruitment strength (Rosa et al., 2010). In particular, sardine spawners in 
better physiological condition have higher reproductive outputs (more batches of eggs per 
season and more viable eggs per batch) than fish in lower condition, which increases the 
probability of recruitment success and produces a stronger year-class that, apparently, is 
influential enough to be reflected in the fisheries of the following year (Rosa et al., 2010).

A comparative analysis of Fulton’s K condition factor of 10 cod stocks in the North 
Atlantic in relation to the reproductive potential of cod was carried out by Rätz and Lloret 
(2003). The results showed that the a coefficients (function’s slopes) obtained from standard-
ized Ricker’s recruitment–spawning stock biomass (SSB) relationships, which were defined 
as indicators for the recruitment potential of stocks, were positively correlated with the mean 
condition factor of the 10 stocks analyzed. Figure 4.24 illustrates the linear model explaining 
49% of the observed variation in Ricker’s a coefficients. This indicated that stocks consisting 
of individuals in poor condition appear to be very susceptible to reduced recruitment at low 
SSB, while the stocks that consist of fish in good condition seem to behave more robustly 
with a higher probability of good recruitment at low SSB (Rätz & Lloret, 2003). According 
to the authors, the positive effect of cod condition on their reproductive potential generally 
implies that the stocks in good condition in the temperate regions of the northeast and west 
Atlantic can sustain higher exploitation rates than stocks in poor condition in the colder 
regimes of the northwest Atlantic (Greenland, Labrador and Grand Banks).

Notwithstanding the general positive relationships between condition and recruitment, 
this relationship has not always been found – indeed, even the inverse has been observed. 
For example, Engelhard and Heino (2005) unexpectedly found an inverse relationship of the 
condition index of North Atlantic herring spawners in year y with the fraction surviving to 
year y + 1.
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Figure 4.22  Variations in the annual recruitment (R) of the anchovy population in the Bay of Biscay  
as a function of the mean RNA/DNA ratios determined in the white muscle of individual fish during the 
breeding season of the preceding year. From Bergeron & Massé (2012).
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4.2.2	 Impact on growth

There are only a few examples showing that good-condition fish grow faster. A comparative 
analysis of Fulton’s K condition factor of 10 cod stocks in the North Atlantic in relation to 
growth rates revealed that stocks in better condition display significantly higher weights at 
age 4 than stocks in poor condition (Rätz & Lloret, 2003). Nearly 80% of the observed var-
iation in mean weights at age 4 was explained by the mean condition factor (Fig. 4.25). In 
general, cod from stocks in better condition are much heavier at age 4 than fish in stocks in 
poor condition.

In other cases, condition explains a small percentage (sometimes none) of the growth var-
iation. For example, condition factor explained just a small percentage (4%) of the growth 
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variation of juvenile Atlantic salmon (Salmo salar), whereas other factors such as water 
temperature and seasonal effects explained most of the variability in condition (Bacon et al., 
2005). Also Liao et al. (1995) found little evidence for a relationship between the relative 
condition (W

r
) and growth of two freshwater fish (pumpkin seed Lepomis gibbosus and 

golden shiner Notemigonus crysoleucas) inhabiting different southern Quebec lakes 
(Canada). The authors found that there were no significant correlations of size-specific W

r
 

estimates with corresponding size-specific growth estimates among lakes.

4.2.3	 Impact on natural mortality

Natural mortality (M) is a very important life-history parameter that is essential for effective 
management of exploited fish populations. M values have important implications for setting 
allowable harvest rates because sustainable management of fish populations requires that 
total mortality – the sum of natural and fishing mortality – remains below a target level. If 
natural mortality rates are underestimated, allowable harvest rates may be overestimated. 
Unfortunately, M is difficult to estimate directly because natural deaths are rarely observed. 
Furthermore, often little is known about factors that affect M. For many fisheries, natural 
mortality rates are simply assumed to have a constant value, or are inferred from techniques 
such as catch curve analysis, regression of the instantaneous total mortality rate (Z) on 
fishing effort, correlation of M with other life-history parameters (e.g., longevity), ecosystem 
modeling, tagging and visual censuses. While all these techniques are useful for estimating 
the magnitude of M, they tell us little about the underlying causes of natural mortality. This 
is where the analysis of fish condition comes into play, because among all factors that can 
affect M, condition is a very important one.

In general, low energy reserves may lower the chances of survival, leading to an increase 
in natural mortality. Starvation due to exhaustion of energy reserves, particularly during the 
non-feeding and reproductive periods, weakens fish and renders them more susceptible to 
predation and fishery, diseases and to a variety of environmental stressors. In particular, low 
energy stores decrease fish immunity, which increases their mortality due to diseases 
(Mikryakov et al., 2001).

There are a few examples in the wild showing that poor-condition fish suffer higher 
natural mortality rates than good-condition fish because of higher predation (e.g., lower 
swimming performance) or lower resistance to other factors such as overwinter starvation 
and breeding costs. In a study about the recruits of the coral reef fish Pomacentrus moluc-
censis, high-condition fish were not only aggressively dominant and preyed more than 
low-condition fish, but were shown to be at much lower risk of predation (Booth & Beretta, 
2004). It was concluded that the condition of new settlers can have an important influence 
on subsequent juvenile survival. In other studies the importance of fish condition in 
determining swimming performance of fish with respect to speed and endurance was 
documented. For example, Martínez et al. (2003) showed that declining condition may 
decrease metabolic and swimming capacities of cod, and hence their ability to avoid 
predation. Also low levels of neutral lipids in the muscle and liver characterize a poor 
swimming performance in horse-mackerel (Yuneva et al., 1991), whereas the swimming 
performance of juvenile seabream Diplodus sargus in the northwest Mediterranean was also 
affected by body condition (Planes et al., 1997).

Impaired condition due to overwinter starvation can also be an important cause of 
mortality. For example, the condition factors and hepatosomatic indicators of Gulf of 
St Lawrence cod in spring were low enough to suggest that winter starvation may cause 
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mortality in this stock (Schwalme & Chouinard, 1999). There are also many remarkable 
examples indicating the relationship between fish condition and M of fish in freshwater 
species with respect to overwintering. In general, winter is an energetically stressful period 
for northern-temperate freshwater fish, as reflected by substantial overwinter declines in 
lipid content in a number of fish that is linked to the overwintering natural mortality 
(Hutchings et al., 1999). For example, there is a negative correlation between overwinter 
survival and overwinter reductions in lipids in brook trout Salvelinus fontinalis (Fig. 4.26; 
Hutchings et al., 1999). A similar link between lipid content and mortality is suggested by 
the observation that overwinter mortality of Lough Neagh (Northern Ireland) roach (Rutilus 
rutilus) appears to be inversely related to fat content (Griffiths & Kirkwood, 1995).

Moreover, poor condition in some species may increase vulnerability to predators. For 
example, it was hypothesized that poor-condition cod in Hawke Channel (Canada) due to 
low capelin abundance may have increased vulnerability to predators, in particular harp 
seals, which may be abundant in that region during the cod spawning season (Rose & 
O’Driscoll, 2002). According to the authors, the disappearance of northern cod after first 
spawning raises the hypothesis that mortality increases as a consequence of poor post-
spawning condition coupled with increased predation.

Laboratory studies also provide good indications of the link between M and condition 
of fish. Experiments revealed that energy reserves invested in reproduction by poor-
condition cod females increased their risk of mortality (Lambert & Dutil, 1997b) and that 
natural mortality in cod was inversely related to initial condition factor (Dutil et al., 2006). 
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overwinter reduction in total lipids for reproductive and non-reproductive brook trout (Salvelinus 
fontenalis) in Watern Cove River, Newfoundland. From Hutchings et al. (1999).
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Similar, a comparison of several condition indicators from wild cod in the northern Gulf 
of St Lawrence and cod exposed to a prolonged period of starvation in laboratory experi-
ments revealed that natural mortality from poor condition contributed to lower produc-
tion, possibly contributing to the decline of that stock (Dutil & Lambert, 2000). Further, 
laboratory experiments revealed that there was some indication that survival correlated 
with sardine condition, with better-condition fish being more likely to survive (Marçalo 
et al., 2010).

However, it is important to notice here that the collapse of several stocks is often due 
largely to the impact of fishing mortality, not natural mortality. Thus for example, Fu et al. 
(2001) indicated that it is unlikely that the collapse of the eastern Nova Scotia (Canada) cod 
stock can be attributed to a sudden increase in M; fishing appears to have been the primary 
cause for the stock’s decline.

Nevertheless, a positive relationship between condition and survival has not always been 
found and, in some cases, a negative relationship has even been observed. For example, an 
inverse relationship of the condition index of herring spawners in a given year with the 
fraction surviving to a year later was found in the Barents Sea by Engelhard and Heino 
(2005). The authors hypothesized that reduced condition and increased survival may not 
have cause–effect relationships, but rather be the result of common underlying causes. First, 
favorable conditions early in life can result in high survival but reduced growth and condition 
due to reduced per-capita food intake, as a density-dependent effect. Second, strong year-
classes, characterized by reduced growth and condition indicators, may suffer less predation 
and exploitation mortality due to the dilution effect (Engelhard & Heino, 2005).

Overall, it is clear that more detailed and specialized procedures should be applied in 
order to increase our understanding of the influence that fish health may have on individual 
and population life-history traits such as natural mortality, growth, and reproductive poten-
tial (Lloret et al., 2012). Specialized studies should thus also consider controlled laboratory 
experiments, altering the health of fish in order to illustrate the direct connection between 
health, growth, natural mortality, and reproduction of fish. All these studies will require 
interdisciplinary work among researchers such as parasitologists, fish physiologists and 
fisheries biologists. Results could be used, for example, to improve natural mortality (M) 
and growth estimates to be used as input variables in the standard stock assessments. While 
there are several techniques for estimating M, they tell us little about the underlying causes 
of natural mortality. Then, given sufficient information on fish health, it may be possible to 
more exactly evaluate M, growth rates, and spawner quality (and not only quantity) and to 
forecast temporal changes of these variables (Lloret et al., 2012).

Considerable mortality of some fish species can occur during wintering migration because 
of reduced condition. Fish, as a rule, do not feed intensively during this period. Azov 
anchovy that have not accumulated sufficient level of fat stores die in the Sea of Azov when 
cold weather arrives. Natural losses of this fish are observed during migration to the Black 
Sea. Also, mass death of migrating birds, as a result of exhaustion, is an analogous example. 
Death usually occurs in weak fish with low energy content. We assume, according to our 
experimental data, that the proportion of anchovy dying as a result of this comprises about 
15% of all stock (Shulman, 1972a, 1974; Shulman et al., 1978).

4.2.4	 Applied recommendations

Overall, the most useful functional and metabolic indicators of fish condition during the 
different stages of ontogenesis may be the following:
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●● proximate chemical composition, primarily total lipids, protein, glycogen and water 
content;

●● neutral lipids (fat, triacylglycerol) content;
●● wax esters;
●● saturated and monounsaturated free fatty acids;
●● polyunsaturated fatty acids (DHA 22:6 ω-3, EPA 20:5 ω-3 and also arachidonic 20:4 ω-6);
●● polar lipids (phospholipids, primarily phosphatidylethanolamine, phosphatidylcholine, 

and cholesterol);
●● free amino acids (total content);
●● RNA, DNA and RNA/DNA ratio;
●● hormones (thyroxine, somatotropin, prolactin, corticoids, gonadotropins, etc.).

These indicators are determined in eggs and embryos, larvae, juveniles, and adult fish (total 
body, red and white muscle, liver and gonads).

4.3	 Condition during the annual cycle

Annual cycles are a part of ontogenesis, during which populations undergo processes that 
are essential for their continued existence (Shulman & Love, 1999). Annual cycles are the 
manifestation of endogenous rhythms, which developed during evolution and which are 
under the strong control of exogenous, primarily climatic, factors. These endogenous 
rhythms are themselves a manifestation of complex functional metabolic processes carried 
out at the sub-organism (molecular, cell, tissue) and organism levels. Thus annual cycles are 
endogenous stereotypes that balance populations with the environment. Annual cycles are 
divided into periods, which for fish include growth, reproduction, feeding, migration, and 
wintering. Although these periods provide a common basis for understanding the processes 
involved in annual cycles, there are many exceptions. Thus, for example, migrations are 
absent in settled species while wintering is absent in those species inhabiting low latitudes, 
particularly in the tropics.

In the literature on fish biochemistry, physiology, and ecology, there are thousands of 
examples of rhythms and their metabolic components (see, for example, Fig. 4.27). Different 
biochemical patterns do not change equally during the annual cycle (Fig. 4.28). The most 

Figure 4.27  Annual dynamics of fat accumulation (dF/dt, mg lipid/g per day) in Black Sea 
warm-tolerant anchovy (curve 1) and cold-tolerant sprat (curve 2). After Shulman & Love (1999).
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variability is observed in elements of carbohydrate metabolism (glycogen, glucose, and 
lactate) as well as creatine phosphate. These substances provide emergency energy to 
organisms and populations adapting to environmental and functional alterations. 
Triacylglycerols, serum albumins, and α- and β-globulins are mobilized to provide energy 
during maturation and feeding. Thus these changes have a monocyclic character. Finally, 
there is a third group that comprises components with a relatively stable content: ATP, 
phospholipids, γ-globulins. These constitute a “gold reservoir” where changes are very large 
despite their low quantity in tissues. Of course, this “gold reservoir” continuously regener-
ates but remains dynamically stable. Many reviews of this subject are available (Love, 1970, 
1980; Shulman, 1972a, 1974; Shatunovsky, 1980; Shulman & Urdenko, 1989; Minyuk 
et al., 1997; Shulman & Love, 1999). In the last few years, several excellent publications on 
this subject have appeared (e.g., Adams, 1999; Kolakovska et al., 2003; Kolakovska, 2010).

Often such rhythms are referred to as “seasonal changes.” We consider that such termi-
nology is superficial and not exact. Firstly, “seasonal change” is not an accurate term because 
it does not consider the main cause of these changes, which are not connected with seasons 
but more with ecological/physiological processes in populations (reproduction, feeding, 
migration, wintering, etc.). Therefore we prefer to talk about “changes during the annual 
cycle.” Secondly, these changes do not always follow seasons. For instance, in fish from the 
northern seas, spawning and other cycles (wintering, migration, etc.) can embrace adjacent 
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(consecutive) seasons, and in different species and populations are dated to different times 
of the year (Parrish & Saville, 1965; Shatunovsky, 1980; Graham & Laurs, 1982). Thus, for 
instance, in some species “fall season” means “spawning” but for others “pre-spawning.” In 
warm- and cold-tolerant fish of warm seas, spawning takes place in opposite months of the 
year. Thus for warm-water species spawning in summer, the “fall period” means “after-
spawning feeding” but for cold-water species spawning in winter it means “pre-spawning 
feeding.” Conversely, “spring season” means the opposite. At least in the southern seas (e.g., 
the Mediterranean), the spawning period in fish is very prolonged and can encompass sev-
eral seasons (spring, summer and fall). The concept that fish annual cycles are programmed 
by the genome in close interaction with the environment has been developed in many 
physiological/biochemical investigations (Fontaine, 1948; Hoar, 1953; Gerbilsky, 1958; 
Idler & Bitners, 1958; Love, 1970, 1980; Shulman, 1974, 1978; Beamish et al., 1979; 
Shatunovsly, 1980; Shulman & Love, 1999; Wagner & Congleton, 2004; Kassahn et al., 
2009). These and many other works have dealt with the rhythms of oxygen consumption, 
nitrogen excretion, activity of digestive and tissue enzymes, dynamics of the RNA/DNA 
ratio, protein growth and fat accumulation, changes in fractional and fatty acid composition 
in tissue neutral and polar lipids, blood components, endocrine activity, and were summa-
rized in an earlier book (Shulman & Love, 1999). Here our main objective is to reveal 
functional and metabolic features that can be indicators of the intensity and efficiency of the 
different periods that integrate fish annual cycles.

4.3.1	 Pre-spawning period

We begin with the pre-spawning period (sometimes named pre-spawning feeding). This period 
can accompany spawning, more specifically pre-spawning migration. It is characterized by 
intensive processes of protein synthesis, connected with differentiation and growth of 
generative tissues. At this time, gonad development is in phases III and IV. The liver plays a 
crucial role in gonad formation, synthesizing and transforming vitellogenins, lipoproteins, 
glycoproteins, phosphoproteins as well as structural lipids and transporting them attached to 
transport proteins (albumins, α- and β-globulins) to generative tissues via the blood serum 
(plasma). Because of this, liver size and weight increases during pre-spawning. During this 
period, fish mobilize neutral lipids (fats, triglycerides) that were laid down as reserves during 
food consumption. Parts of these fats are formed by the transformation of carbohydrates and 
even proteins into fat. Thus, the initial amount of fat accumulated at the onset of maturation 
has great significance for spawning. If accumulated fat stores are large, more energy can be 
mobilized to generative synthesis. Thus for a number of fish species (particularly pelagic fish), 
decrease in fat content can be a good indicator of preparation for spawning. However, other 
species do not show this pattern. For example, in red mullet Mullus barbatus and Mullus sur-
muletus from the Mediterranean Sea, there is no decrease in fat stores because feeding occurs 
concurrently during this period (Lloret et al., 2007), reflecting prolonged and intensive feeding.

4.3.2	 Spawning

The spawning period is characterized by high metabolic activity, which is closely related to 
spawning of eggs in females and enhanced locomotory activity in males. During the spawn-
ing period, and just before laying of the eggs, the gonads of females swell because hydration 
of eggs occurs (gonad water content greatly increases). Male spermatozoa manifest enhanced 
content of glycogen and glucose, which it is hypothesized relates to competition between 
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males to succeed in egg fertilization, as those spermatozoa containing more glycogen and 
glucose can swim faster (Bassova, 2001).

In most fish species, the formation of sexual products in the gonads consumes the internal 
stores of energy no matter how great the intake of food. Thus, energy reserves are usually 
greatly diminished in the muscle, liver and other tissues during breeding in order to supply 
energy to the ovary for intensive generative synthesis and to supply essential nutrients such 
as fatty acids and lipid-soluble nutrients, and increase during the post-spawning and regen-
eration (Chellappa et al., 1989; Wiegand, 1996; Cubillos et al., 2001; Okuda, 2001;  Mello & 
Rose 2005; Ter Hofstede et al., 2007). Thus minimum values in condition are usually 
observed during or just after spawning. In cod for example, a significant depletion of body 
reserves during the course of spawning has been well documented (Lambert & Dutil, 1997b). 
Similar to this, Fulton’s K condition factor and hepatosomatic index (HSI) of cod off southern 
Newfoundland were lowest during the spawning season (spring) and increased rapidly dur-
ing the post-spawning period, reaching maximum values by fall (K and HSI increased on 
average 24% and 82% between spring and fall, respectively, Fig. 4.29; Mello & Rose, 2005). 
In the cardinalfish Apogon notatus from southern Japan, condition factor, hepatosomatic 
index and fat body–somatic index declined in both sexes during the breeding season (Fig. 4.30; 
Okuda, 2001). In red drum Sciaenops ocellatus from the Gulf of Mexico, the depletion of 
lipid reserves from liver (a major depot for lipid in this species) and visceral fat in late summer 
indicates that lipid stored during active spring and summer feeding supplies energy for 
reproduction (Craig et al., 2000). In English sole Parophrys vetulus from the northeast Pacific, 
an analysis of gross chemical composition revealed a disproportionate transfer of materials 
from body to the ovaries; 55% of lost body protein, 47% of ash, and 5% of lipids were 
accounted for by an increase in these constituents in ovarian tissue during sexual maturation 
(Dygert, 1990). In Sardinella aurita, condition is lowest during the breeding season. Thus, 
mesenteric lipid content of S. aurita in the Adriatic showed an inverse relationship, reaching 
minimum values in spring/summer when the species reproduces (Mustac & Sinovcic, 2012). 
Similar to this, the mesenteric fat content of S. aurita in Mauritanian waters (northwest 
Africa) reached minimum values just after breeding (Ter Hofstede et al., 2007). Also the 
condition of megrim Lepidorhombus whiffiagonis from the eastern Adriatic Sea is lowest just 
after spawning (Santic et al., 2012). Again, the seasonality of Fulton’s K condition factor of 
several species of barracudas (Sphyraena spp.) in Mediterranean Egyptian waters was linked 
to the reproductive cycle, with lowest values obtained during spring and summer (breeding 
season) (Allam et al., 2004a). In decapods, there was a significant and negative relationship 
between GSI and the Le Cren relative condition factor of female red shrimp in the Balearic 
Islands (northwest Mediterranean), indicating that there is an effective transference of somatic 
energy to the gonads during reproduction (Carbonell et al., 2008). This is in line with the 
seasonal fluctuations of condition, with minimum values (i.e., lower energy reserves) occur-
ring during spawning (from May to August) and maximum values (i.e., higher energy 
reserves) during the mating period from March to April (Eliassen & Vahl, 1982).

Also, in red porgy Pagrus pagrus from the Buenos Aires coast (Argentina), despite the fact 
that females feed throughout the entire spawning period, it was shown that between 
pre-spawning (September, water temperature 15°C) and mid-spawning (December, water 
temperature 19°C), they lost 45 and 38% of their muscle and liver lipids, respectively, and 
89% of the perivisceral fat associated with the gut and body cavity (Aristizabal, 2007). 
Further, in several species of the genus Diplodus in the Gulf of Tunis (central Mediterranean), 
the HSI presented an inverse trend to the GSI in relation to breeding activity (Mouine et al., 
2012). Also in this study the condition factor showed significant monthly variations affected 
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by the sexual cycle of the Diplodus species. For example, in white seabream Diplodus sargus 
from the Canary Islands coast, gonadal total lipid values of males and females increased 
during pre-spawning and spawning (from November to March), particularly in the case of 
females (Pérez et al., 2007). This explains why in general the ovaries contain, during the 

Figure 4.29  Temporal changes in (a) mean somatic weight (kg), (b) Fulton’s K condition factor  
(g/cm3), (c) hepatosomatic index (HSI), and (d) frequency of spawning females (black bar) and males 
(open bar) from cod sampled during acoustic surveys in Placentia Bay, Newfoundland. Cohorts: black 
circle, 1990; open diamond, 1991; black triangle, 1992; open square, 1993. From Mello & Rose (2005).
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breeding phase, a significant amount of protein and lipid (e.g., 39% and 14% respectively in 
the case of hake; Rodrigo et al., 1998). The energetic costs of reproduction can also be 
detected when the condition of reproductive individuals is compared with that of 
non-reproductive ones. For example, Hutchings et al. (1999) identified an average overwinter 
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loss of lipids in reproductive brook trout (males and females combined), as a percentage of 
total body weight, more than double that of non-reproductive individuals (Fig. 4.31).

However, in some small pelagic fish which used to spawn in areas of substantial biological 
production to ensure adequate adult feeding and which therefore do not separate feeding and 
reproduction seasons (Hunter & Leong, 1981; Lisovenko & Andrianov, 1996), the condition 
increases during the breeding season because feeding not only meets energy requirements 
of daily spawning but also provides surplus energy. For example, the condition of anchovy 
in the western Mediterranean and in Cádiz (southwest Spain) increases in late spring and 
summer (breeding season) due to a greater food availability resulting from the winter and 
summer primary production peaks (Giráldez & Abad, 1995; Millán, 1999). Similar, the 
somatic weight of the bay anchovy Anchoa mitchilli in Chesapeake Bay (northwest Atlantic) 
increased by 32 to 33 during the spawning season (Wang & Houde, 1994). Conversely, the 
muscle lipid content of the Iberian sardine increased when sardines were in the resting stage 
of reproduction and sharply decreased when they started to reproduce (Garrido et al., 2008).

Species’ sex-specific energetic costs of reproduction explain the sex differences that usu-
ally exist between condition of males and females. In many fish species, males and females 
differ in their physiological condition, with females’ condition usually being greater than 
that of males before reproduction to account for the greater energy expenditures of females 
during breeding (female gonads tend to be larger; Shulman & Love, 1999). For example, in 
white seabream Diplodus sargus in the northwest Mediterranean, mean HSI of female 
spawners was significantly greater than that of male spawners, indicating that for a given 
body weight, livers of female spawners were significantly bigger than those of male 
spawners (Lloret & Planes, 2003). In Icelandic cod, age 5 and 6 year mature females had 
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significantly higher HSI than mature males of the same age (Pardoe et al., 2008). On the 
northwest Mediterranean shelf, Lloret et al. (2005) found that the HSI of females of Mullus 
barbatus and Pagellys erythrinus was significantly better than that of males. Furthermore, 
Fulton’s K condition factor of females of Lophius budegassa, Merluccius merluccius, 
Mullus barbatus and M. surmuletus in the northwest Mediterranean was higher than that of 
males (Lloret et al., 2002). Notwithstanding this general pattern, at the climax of spawning, 
male fish may incur greater energy losses than females because of greater motor activity due 
to courtship and competition among males (Shulman & Love, 1999).

Finally, it is also worth noting that immature individuals are usually in worse condition 
than mature ones. For example, condition of mature female and male cod on the Icelandic 
shelf is significantly higher than that of immature cod (Pardoe et al., 2008). Similarly, for 
eight demersal species of the northwest Mediterranean among which were Lophius piscato-
rius (Fig. 4.32) and Merluccius merluccius, adults were better conditioned (higher Fulton’s 
K condition factor) than juveniles (Fig. 4.33; Lloret et al., 2002). This is because in many fish 
species, sexual maturity is accompanied by a sharp deceleration in growth; however, body 
weight and condition continue to increase, usually at a higher rate. It is during this period 
(i.e., the change from juvenile to adult) when lipid content increases considerably. 
Furthermore, juvenile fish spend most of the energy for growth and do not accumulate it. 
However, in other species (e.g., white seabream in the northwest Mediterranean) no difference 
in lipid content between juveniles and adults has been found (Lloret & Planes, 2003).

4.3.3	 Post-spawning feeding

Post-spawning feeding (for many species it is pre-wintering too) is characterized by 
intensive accumulation of fat stores, which are necessary for normal population survival 
in those periods of the annual cycle when food consumption ceases completely or 

Figure 4.32  Lophius piscatorius. Photo by Bernd Mörker.



94  Condition and Health Indicators of Exploited Marine Fishes

largely declines, such as during wintering migration and wintering. Together with 
neutral lipids (triacylglycerols), there are increases in accumulated levels of creatine 
phosphate in muscle and glycogen levels in muscle, and especially in liver. The 
concentration of serum proteins (mainly albumin), utilized for gonad maturation, also 
increases. The heterogeneity of protein fractions in blood serum decreases. Although 
the processes of protein growth continue, their intensity is considerably less than that 
of fat accumulation.

4.3.4	 Wintering

Wintering (more accurately pre-wintering, but sometimes also called overwintering) is the 
most critical period for fish (Shuter et al., 1980; Hutchings et al., 1999), especially for juve-
niles, for which the first winter is the “bottleneck” (Henderson et al., 1988). Water tempera-
ture is a major cause of these deep metabolic changes, as cold conditions decrease food 
digestion and assimilation (Pearse & Achtenberg, 1917).

During wintering, the level of metabolism in populations is strongly reduced. During 
winter most parameters decrease because fish feeding strongly decreases or completely 
stops. The RNA/DNA ratio is reduced (e.g., Dicentrarchus labrax; Mustafa et al., 1991) 
and fat reserves are steadily decreased as well as the levels of glycogen and creatine 
phosphate in tissues. The degree of lipid unsaturation reaches a maximum value in 
winter, which constitutes an adaptation of warm-water species to cold-water tempera-
tures (Henderson & Tocher, 1987). During wintering protein growth does not occur and 
the alkaline phosphatase of scales (which controls sclerite formation by calcification of 
external covers and indirectly corresponds to growth of the bony skeleton) strongly 
decreases, whereas protein content in blood serum remains stable. Fish are forced 
to  move from exogenous to endogenous feeding (Ackman, 1989): together with fats 
(particularly triglycerides) and glycogen, a significant fraction of phospholipids and 
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especially proteins are mobilized to energy metabolism (endogenous feeding), whereas 
lysosomal activity (lipase, protease, glycogenase, etc.) increases strongly in liver and 
muscles (Hochachka & Somero, 1984, Hochachka and Somero, 2002; Nemova & 
Vysotskaya, 2004; Vysotskaya & Nemova, 2008). Lipolysis and proteolysis during 
wintering are therefore connected to endogenous feeding and starvation. There is also a 
decrease in enzyme number and a change in the isozyme spectrum (Mommsen et al., 
1980; Hochachka & Somero, 1984; Reyiol et al., 2009). During unfavorable wintering 
conditions, the levels of ATP and ADP strongly decrease in muscle, liver and brain of 
fish such as carp Cyprinus carpio (Zhidenko, 1994). The author considers that mass fish 
mortality is due to disturbances in ATP resynthesis. Clearly, wintering is the main 
period when population numbers fall. Many authors have revealed an inverse relation 
between level of energy stores accumulated by fish at the start of wintering and their 
survival during this period (Berman, 1956; Kirpichnikov, 1958; Mukhina, 1958; 
Polyakov, 1975; Higashi et al., 1964; Belyanina, 1966). In particular, triglyceride and 
phospholipid deficiency have a negative effect on juvenile survival during wintering 
(Love, 1980; Henderson & Tocher, 1987). The more northerly the region the fish inhabit, 
the shorter the period of growth and the worse the survival (Miranda & Hubbard, 1994). 
Juveniles suffer the most (Shuter et al., 1980; Adams, 1999; Hutchings et al., 1999), 
which is related to metabolic allometry (Post & Evans, 1989; Thompson et al., 1991; 
Miranda & Hubbard, 1994). Fish juveniles have a more active metabolism and less 
energy stores, which disturbs maintenance metabolism (Schmidt-Nielsen, 1984; Post & 
Evans, 1989).

Overall, plasma triglycerides as well as total protein, calcium, and alkaline phosphatase 
are the best indicators of nutritional status during wintering. Cold adaptation obliges 
metabolism to take advantage of anaerobic processes and consequently there is increasing 
utilization of cathepsin B and D. The decrease in phospholipid content disturbs the main-
tenance of osmotic and electrolyte homeostasis (Lerey et al., 1986; Adams, 1999). Lipids 
have an important role in nerve impulse conduction (Sutharshiny & Sivashanthini, 2001), 
and are key for maintenance of osmotic and electrolyte homeostasis (Lerey et al., 1986). 
Thus, during starvation, membrane ion transport, especially at low temperatures, is dis-
turbed. During starvation, protein biosynthesis and RNA/DNA ratio greatly decrease and 
begin to recover only at the end of wintering (Mustafa et al., 1991). At the end of winter, 
in warm-tolerant fish the initial stages of gametogenesis begin (i.e., processes of repro-
ductive tissue differentiation), and these initial stages consume the most energy throughout 
the whole process of reproductive maturation. Even though these profound metabolic 
changes play a key role in supporting the necessary level of vigor, sometimes they do not 
save fish from starvation. At the end of wintering fish become exhausted due to consider-
able expenditures of neutral lipids (fats) and proteins and this is the main reason for 
mortality, especially if temperatures during the winter are severe. Furthermore, during 
wintering (also during maturation), sensitivity to unfavorable environmental factors, 
including parasites, rises due to exhaustion of fat stores (Ghittino, 1989). The reduction in 
fat reserves weakens the immune system of fish (Gurr, 1983) and therefore mortality 
increases. Low energy stores during wintering lead to higher mortality from predators 
(Kramer & Smith, 1962; Herting & Witt, 1967; Chevalier, 1973; Shelton et al., 1979; 
Wicker & Jonson, 1987). At the same time food availability decreases (McKinnon, 1973), 
having broad negative effects, especially for winter-spawning fishes (e.g., Black Sea 
sprat). Thus, in general, overwintering survival is better when fish have a higher fat 
content (Wagner & Congleton, 2004).
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Among the best examples of these profound metabolic changes during wintering are 
rainbow trout Oncorhynchus mykiss and chinook salmon Oncorhynchus tshawytscha. 
Shulman and Love (1999) showed that metabolism in juveniles of rainbow trout 
O. mykiss during long (147-day) starvation undergoes three phases: (i) glycogen and 
glucose are critical fuels for the central nervous system, so in order to maintain glucose 
levels lipids are utilized and proteins preserved; (ii) there is further utilization of lipids 
and partial utilization of proteins; and (iii) protein depletion occurs which ultimately 
leads to death. Similar results were also found for chinook salmon O. tshawytscha (Navaro & 
Gutieres, 1995): during starvation, juvenile (smolt) glucose is synthesized using proteins 
and lipids as substrates (Gutiérrez et al., 1995). In Atlantic cod, Black and Love (1986) 
showed how endogenous substrates are used during starvation in a similar sequence. 
Liver lipids and liver and white muscle glycogen begin to be mobilized at the start of 
starvation; liver lipids are exhausted first until they reach minimum values. Then proteins 
of white and red muscle and glycogen of red muscle begin to be mobilized in a second 
step until fish dies.

Different species adapt to wintering condition in different ways. In Atlantic cod, 
gluconeogenesis decreases during severe starvation. In the liver, the activity of phospho-
enolpyruvate carboxylase, fructose diphosphatase and alanine aminotransferase, as Love 
and Black (1990) showed, decreases considerably after 22 days of starvation. Less active 
fish species adapted to low glycogen levels stop swimming but more active fish such as 
rainbow trout continue gluconeogenesis and increase the activity of these enzymes during 
the 8 weeks of starvation. Furthermore, glycogen content of fish brain and heart is not 
affected by starvation (Love, 1958, 1970).

4.3.5	 Migrations

Migratory fish species such as tuna have a higher and more variable fat content compared 
with most non-migratory fish species, indicating that lipids are the main source of energy 
during these long-range migrations (Stansby, 1976). For these species, extensive spawning 
migrations incur a high energetic cost that is exacerbated by the fact that some do not feed 
while migrating (Engelhard & Heino, 2005). Some species do not even migrate if energy 
stores are insufficient. For example, only herring with sufficient energy stores can success-
fully migrate and spawn (Slotte & Fisksen, 2000). In others, migration distance has been 
linked to available fat stores. For example, if anchovy muscle fatness is high, fish migrate to 
the southeastern part of the Black Sea, whereas if it is low, migration is limited to the 
central-eastern part (Shulman, 1972a, 1974, 2002). Therefore, the evaluation of muscle lipid 
content of Sea of Azov and Black Sea anchovy stocks, along with the analysis of sea 
temperature, have been proposed for forecasting the start of the winter migration of these 
populations, which in turn has implications for stock availability to the fisheries (Shulman, 
1974, 2002; Chashchin & Axelev, 1990; Nikolsky et al., 2009a).

Also there appears to be an excellent link between migration, the reproductive cycle, and 
condition of Sardinella aurita off Mauritania, northwest Africa. From an analysis of 
seasonality in condition factor, GSI and fat content in the mesenteries of this species, it was 
concluded that the fish were in good condition when entering the Mauritanian zone, used 
most of their reserves during the spawning activities, and during the months after spawn-
ing, though feeding is maintained, the physical condition of the fish collapses, with fat 
content rapidly declining (Ter Hofstede et al., 2007). After that they retreat to the south in 
order to recover.
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4.3.6	 Applied recommendations

The same indicators apply as given in section 4.2.4.

4.4	 Other cycles

4.4.1	 Daily rhythms

Although daily (circadian) rhythms may seem to have little relation to indicators of fish 
condition, this is not true. Many functions and processes of metabolism in fish connect directly 
or indirectly with time of day, and therefore data obtained at different hours may result in dif-
ferent outcomes. A good example of this is the daily change in energy metabolism associated 
with differences in locomotion, food consumption and some other forms of functional activity 
during the day. Different levels of locomotion that account for hunting during light or dark 
periods (or early in the morning or late in the afternoon) lead to different levels of oxygen con-
sumption during persecution of prey. Belokopytin (1993) deduced the following formula:

	 = vQ ab 	 (4.1)

where Q represents energy expenditure, v locomotion velocity, and a and b coefficients.
It is curious that daily predators “sleep” many hours during darkness (Radakov & 

Solovyev, 1959; Belokopytin, 1993), although this “sleep” is completely different from that 
of higher animals (Karmanova et al., 1976). However, night predators, even sedentary 
ones  such as Scorpaena porcus, are very active at night and can swim distances up to 
500 m (Belokopytin, 1993; Fig. 4.34). In addition, fish such as sprat undergo daily vertical 
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migrations to the surface in order to feed on phytoplankton and zooplankton (these migra-
tions also need large energy expenditures).

It is also known that many fish species feed more intensively in the morning and espe-
cially during the evening (twilight) hours. Thus digestive enzyme activity in these fish falls 
during these periods (Ugolev & Kuzmina, 1993; Kuzmina, 2008). Lipid accumulation (all 
fractions) also occurs at this time (Lal & Singh, 1999; Khal’ko & Khal’ko, 2001, 2003; 
Khal’ko et al., 2009). Expenditure of lipids (especially triacylglycerols) mostly occurs dur-
ing spawning hours (Khal’ko et al., 2009). Processes of protein growth fall during the hours 
following lipid accumulation (Revina, 1964; Arkhipchuk & Makarova, 1992). It is well 
known that daily rhythms of fish metabolism are under close neuroendocrine control (hypo-
thalamus–epiphysis–hypophysis), including somatotropin, prolactin, serotonin and norepi-
nephrine (noradrenaline) (Lee & Meier, 1967; Polenov, 1983; Leatherland et al., 1974; 
Sautin, 1989).

4.4.2	 Interannual fluctuations

The literature contains considerable data about interannual fluctuations of fish metabolic 
characteristics. Most of these fluctuations are caused by climatic change, which affects 
many aspects of a population’s environment. These are considered in Chapter 5. Unfortunately 
most studies deal with very short time series (2–4 years) and are not long enough for mean-
ingful analyses. Most of these investigations were carried out with fish lipid content because 
of its large interannual variability and the preservation of samples collected. Examples of 
such investigations are Lasker’s (1962, 1970) work on the Pacific sardine Sardinops caerulea 
from California, which expanded from 1932 until 1956, and also the studies carried out by 
Smith and Epple (1982) on anchovy Engraulis ringens in the same region, as well as those 
from Rosa et al. (2010) on sardine and anchovy in the Portuguese region and Kolakovska 
et  al. (2003) and Kolakovska (2010) on Baltic herring. There have also been important 
long-term studies on the lipid fraction content of Californian anchovy Engraulis mordax 
(Håkanson, 1989a,b, 1993) and North Sea sprat (Håkanson et al., 1994).

We have studied the lipid (primarily fat) content of the Black Sea sprat in the summer 
period of feeding completion, when these stores reach maximal values, during the period 
from 1960 to 2012 (Shulman, 1974; Shulman et al., 1993, 2009a; Minyuk et al., 1997; 
Nikolsky & Shulman, 2005; Nikolsky et al., 2009b, 2011). These data will be devoted to 
monitoring stock and population condition. There is also a short time series (from 1956 to 
1973) on lipid (fat) content of Black Sea anchovy in the autumn period of feeding comple-
tion (Danilevsky, 1964; Dobrovolov, 1972; Shulman, 1972a, 1974; Danilevsky et al., 1979; 
Shulman & Dobrovolov, 1979). Data from Chashchin and Axelev (1990), obtained in the 
1980s, unfortunately may not allow us to estimate interannual fluctuations. Recently, the 
investigations about the Black Sea anchovy have been renewed by Nikolsky et al. (2009a, 
2011). These comprise data on the interannual changes of fatness of Azov anchovy (Shulman, 
1960a,b, 1972a, 1974; Danilevsky, 1964; Taranenko, 1964; Dubrovin et al., 1973; Luts & 
Rogov, 1978). They cover the time frame from 1953 to 1974. During the first period of these 
investigations (to 1966), there is good correlation of fatness variability between two differ-
ent anchovy populations (Sea of Azov and Black Sea) (Shulman, 1972a, 1974). Because 
both these marine basins inhabit a common climatic zone, fluctuations in hydrological and 
hydrochemical regimes are similar, which may explain the high degree of coincidence of 
fatness variability between stocks. After 1966, data on Sea of Azov and Black Sea anchovy 
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fatness is much more difficult to compare due to discrepancies in collection and elaboration 
of field samples.

Interannual changes in neutral lipid (fat) content and condition factors in marine fish were 
observed also by Kaga et al. (2009) and Kaga and Sato (2010) with salmon of the genus 
Oncorhynchus (chum salmon O. keta, sockeye salmon O. nerka and pink salmon O. gorbus-
cha) in the North Pacific and the Bering Sea; by Lloret et al. (2005, 2007) with several fish 
species in the Mediterranean; by García-Charton et al. (2004) with Mediterranean rocky 
reef fish assembles; by Hidalgo et al. (2008) and Domínguez-Petit and Saborido-Rey (2010) 
with hake Merluccius merluccius in the western Mediterranean; and by Marshall et al. 
(2000, 2004) with North Atlantic cod.

The number of investigations dealing with other metabolic characteristics are few. They 
relate to some parameters of protein metabolism and blood mineral composition of chinook 
salmon O. tshawytscha (Wagner & Congleton, 2004) and antioxidative enzymes of Black 
Sea fish (Rudneva, 2006; Rudneva et al., 2011).

4.5	 Connection indicators between fish metabolism, 
abundance dynamics, behavior, and distribution

It is obvious that metabolic rhythms are the foundation of abundance (number) dynamics, 
behavior and distribution of fish populations and stocks. However, the opposite relation – 
influence of abundance and complicated forms of behavior on fish metabolism – also has 
significance. Shulman and Love (1999) have already concentrated on these very important 
aspects. Now we will consider new results obtained since then as well as some significant 
ones which were unknown before.

4.5.1	 Abundance dynamics

The interaction between metabolism and abundance was first demonstrated for fish by 
G.V. Nikolsky (1974) using a simple conceptual model. The model connects recruitment, 
adult stock, total elimination, and food supply of fish. A similar model was also elaborated 
for other animals such as insects, birds, and mammals (e.g., Elton, 1958). Recruitment of a 
species depends significantly on abundance of the brood. Abundance, in turn, is influenced 
in large degree by population fecundity and quality of reproductive products. These prod-
ucts comprise content of nucleic acids, proteins, phospholipids, and cholesterol, and energy 
substrates (neutral lipids/triacylglycerols, sometimes wax ethers and glycogen). It was 
shown that the higher the content of these substances in oocytes and spermatozoa, the better 
the fertility and development of the eggs and larvae (Hester, 1964; Cowey & Sargent, 1972; 
Shatunovsky, 1980; Gosh, 1985; Zhukinsky, 1986; Konovalov, 1989; Rowe et al., 1991; 
Brown & Taylor, 1992; Henderson & Tocher, 1987; Henderson et al., 1996; Adams, 1999). 
Better larval condition improves survival, development to juvenile stage, and then recruit-
ment to the population (Post & Evans, 1980; Schmidt-Nielsen, 1983; Thorpe et al., 1984; 
Wagner & Congleton, 2004). Food search by larvae and juveniles, as well as escape from 
predators, is more successful in more developed individuals (Prosser & Brown, 1962; Brown 
& Taylor, 1992). Higher content of lipids promotes increased resistance of eggs and larvae 
to unfavorable external conditions (Gall, 1974; Ware, 1975a,b; Thorpe et al., 1984; Docker 
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et al., 1986; Brown & Taylor, 1992; Kamler, 1992). Abiotic factors include water tempera-
ture (which can be higher or lower than the optimal limit), oxygen (especially deficiency), 
and water pollution among others (Wedemeyer et al., 1984). Adaptation to unfavorable 
factors requires large energy expenditures, which will be provided by neutral lipids. In this 
case, sensitivity to these negative factors increases (Shulman & Love, 1999). Biotic factors 
include food deficiency and presence of predators, parasites and diseases. Food deficiency 
has great significance for larvae during critical periods of conversion to external feeding 
(named “bottleneck” by Henderson et al., 1988). It is during this stage that mass mortality 
occurs. Higher energy stores can strongly reduce this mortality. In particular, polyenic fatty 
acids play an important role in the successful development of eggs and larvae (Sargent, 
1978; Sargent & Henderson, 1980; Walton & Cowey, 1982; Yuneva et al., 1990), because 
higher levels of polar lipids allow higher metabolic activity of cellular and subcellular 
membranes. Higher content of DHA also affects the development of sense organs and 
higher nervous function which, together with higher content of neutral lipids, promotes suc-
cessful predation and escape from predators. In this regard, the outstanding investigations 
of Sargent (1995), Bell et al. (1995), and Bell and Sargent (1996) showed that 22:6 ω-3 is 
accumulated in rhodopsin of the larval retina, promoting improvement in vision and helping 
survival. Higher lipid content in eggs increases the ability of larvae to begin self-feeding 
earlier and to continue it longer than larvae with lower energy stores (Brown & Taylor, 
1992). Larger larvae can better find prey, as well as to escape from predators. They have 
more ability to grow and survive. Lipids play a significant role in nerve impulse conduction 
of larvae and juveniles (Sutharshiny & Sivashanthini, 2011). Carbohydrates and proteins 
also contribute to the energy potential of eggs and larvae, although this contribution is not 
so large as that of lipids (Pepin & Myers, 1991).

There is a close relationship between levels of plastic and energy components in generative 
products and bodies of spawners, particularly in females (Shatunovsky, 1980; Krivobok, 
1964; Shulman, 1972, 1974; Holdway & Beamish, 1985; Shatunovsky & Rychagova, 1996; 
Rainuzzo et al., 1997; Lambert et al., 2003; Dominguez-Petit & Saborido-Rey, 2010). The 
mechanism behind such connection is rather clear: proteins, lipids, glycogen and other sub-
stances from muscles and other tissues of adult fish (for example, plasma TAG, cholesterols 
and total proteins) that undergo transformation process in liver “shift” to generative prod-
ucts (Shulman & Love, 1999).

Poor fish condition impairs normal maturation (Newsome & Leduc; 1975; Henderson & 
Nepszy, 1984; Watanabe, 1985; Heming & Buddington, 1988; Henderson et al., 1996). In 
particular, neutral lipid (triacylglycerols, fat) content has particular importance because the 
energy from these lipids is used to power biosynthesis of reproductive products (Shulman, 
1972a, 1974; Shatunovsky, 1980; Holdway & Beamish, 1985; Hochachka & Somero, 1984; 
see, for example, Fig. 4.11). Therefore, a continuous linkage is established between quality 
of spawners, quality of gonads, fecundity and fertilization, quantity and quality of eggs and 
hatching, quantity and quality of larvae, and recruitment and survival.

A vivid example of such linkage is given by Yuneva et al. (1990) obtained by artificial 
interbreeding of Pacific gorbusha O. gorbuscha (see Fig. 4.19). The content of DHA in 
female white muscle is proportionally related to survival of eggs and larvae. Also, high 
levels of neutral lipids are necessary for smoltification and wintering survival of Pacific 
salmon juveniles (Pavlov et al., 1994). There is also an indirect influence of spawner 
quality (condition) on recruitment via growth rates. Good-condition spawners (higher 
content of the most important structural and functional constituents, higher protein bio-
synthesis) usually grow faster, and this relates to an increase in fecundity and recruitment. 
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Later in the book (Chapter 5) we will show that the level of energy stores accumulated 
by fish and their growth rate (defined by protein biosynthesis) are closely related to 
food supply. Consequently, the higher this supply, the higher the quality of spawners, 
and this, as noted above, increases recruitment. Therefore, when the fodder base 
(quantity of food) remains more or less stable, a worsening of the population’s food 
supply is expected as the number of consumers increases due to higher recruitment. A 
decreasing food supply “untwists” the process: when feeding conditions worsen, the 
level of accumulated energy stores and growth rate decrease, the quality of reproductive 
products and fecundity decline, recruitment decreases and consequently also population 
abundance. This reduction in population numbers leads again to an improvement in 
food supply and the cycle renews. In this way, according to Nikolsky (1974), there is 
self-regulation of population number. A sound example of such self-regulation is 
provided by the interannual change in fat content of sprat populations in the Black Sea 
(Shulman et al., 2005): levels of fat increase up to a threshold, after which it begins to 
fall steadily (see Chapter 6, section 6.3). This is, of course, a simplified scheme because 
it is difficult to foresee that food quantity is more stable than number of consumers. In 
fact, abiotic and biotic conditions may affect egg and larval survival to a greater degree 
than spawner quality, and therefore quality cannot effectively protect against loss of 
individuals. For example, survival of eggs and larvae of pelagic Black Sea fish depend 
greatly on temperature regime during the spawning period. In this case, the 
generative products of producers not only benefit from the shift (to the gonads) of the 
initial substrates stored in organs (e.g., liver) and tissues, but also from intensive food 
consumption during the pre-spawning period. Finally, the food supply of larvae plays 
a  significant role in their survival (Zaika, 1983) and consequently in recruitment to 
the  adult stock. For example, Domínguez-Petit and Saborido-Rey (2010) showed 
that  spawning success  of European hake Merluccius merluccius depends more on 
food supply and temperature than on energy reserves stored in adult fish. Nevertheless, 
as a first working hypothesis, the principle of population number self-regulation 
may be accepted.

It is especially important to consider in detail the negative factors that cause fish to die 
during the annual cycle. The most important are deficiency of food supply and inappro-
priate (usually lower at high latitudes) water temperature, which affects particularly the 
early stages of fish ontogenesis (eggs, larvae, juveniles). The elimination of these early 
life stages usually accounts for more than 90% of the natural mortality observed in fish 
populations (Nikolsky, 1974). Also the rest of the population suffers these factors, to 
which we could add other environmental factors such as water pollution and oxygen 
deficiency.

Undoubtedly, self-regulation of population abundance also occurs in adult fish during the 
spawning period. A classic example is the post-spawning death of Pacific salmon (genus 
Oncorhynchus). This is caused by two main factors: (i) total exhaustion of fish due to the 
huge expenditures of energy used during maturation and spawning periods in association 
with anadromous migrations upstream; and (ii) strong hydrocortisone–catecholamine hor-
monal stress (Black, 1958; Idler & Truscoft, 1972; Ardashev et al., 1975; Ando, 1986; 
Maksimovich, 1988). Perhaps fish of many other species also experience loss during pre-
spawning and spawning periods for similar reasons. In general, expenditure of energy stores 
in adult fish is almost complete during these two periods. A number of authors (Henderson 
et al., 1988; Adams, 1999; Kolakovska et al., 2003; Kolakovska, 2010; Rosa et al., 2010) 
showed that a reproducer’s death occurs at a given threshold, for example when the decline 
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in fat content reaches 1.0–1.4% of wet mass (we do not consider here inactive sedentary 
fish). At this time, fish lose up to 50% of body mass (Kleiber, 1961). Frequently death 
occurs in older age groups, as old fish suffer from more energy loss than younger fish under 
unfavorable environmental conditions (Shatunovsky, 1980). In our studies, males of Sea of 
Azov round goby Gobius melanostomus lose fat dramatically (almost to zero) after spawn-
ing in order to protect eggs (at this time they remain inactive and do not eat for long periods; 
Shulman, 1967). As a consequence, most of these gobies die after spawning and only a few 
of the exhausted males survive and later reestablish their energy stores in order to be involved 
in spawning the following year (Rashcheperin, 1967). The same could happen in other types 
of animals (e.g., octopus). Low energy stores decrease fish immunity, which increases their 
susceptibility to diseases and therefore their mortality (Mikryakov et al., 2001). It is 
necessary to remember that energy and structural substrates are allocated to the gonad dur-
ing maturation (i.e., they are shifted from muscles and some mesenterial tissues in liver). 
Thus, liver mass may increase and this can be used as a condition indicator (HSI), together 
with fat content in this organ, of pre-spawning fish (a proxy for successful preparation for 
spawning; Shatunovsky, 1980).

However, the most critical period (bottleneck) in the life history of fish is undoubtedly 
the wintering period, especially for juveniles (Shuter et al., 1980). As explained in detail 
in section 4.2, during this period feeding greatly decreases or even stops, and fish are 
forced to shift from exogenous to endogenous feeding using reserves of neutral lipids 
and even polar lipids as well as proteins (Ackman, 1989). The low temperatures experi-
enced during wintering also contributes to this bottleneck, as lower temperatures induce 
a decrease in food digestion and assimilation (Pearse & Achtenberg, 1917). The termina-
tion or decrease in fish feeding leads to a profound transformation of fish metabolism 
(see section 4.2).

Apart from wintering, other critical periods in the life of fish (albeit less threatening than 
overwintering) are the pre-spawning and spawning periods (see sections 4.3.1 and 4.3.2 for 
a detailed discussion), when energy (fat) stores can be exhausted until they reach just 1% of 
body wet mass because fat stores are used for gonad development (Kleiber, 1961; Henderson 
et al., 1988; Adams, 1999; Rosa et al., 2010). This level of energy is insufficient for normal 
existence.

4.5.2	 Behavior

Metabolic processes and behavior of fish populations and individuals interact during every 
period of the annual cycle. Population behavior is specific and precisely determined in every 
period, from pre-spawning migration and feeding to spawning, post-spawning, wintering 
and wintering migration. The transition of a population from one period of the annual cycle 
to another is possible only after the completion of complex metabolic processes that 
contribute to the aims of the periods. The fraction of the population not able to carry out 
these processes dies. We have shown in section 4.2.3 several examples of such mortality 
during periods of wintering migration and wintering. Post-spawning death is a different 
story, as fish have had time before death occurs to fulfill their aim (i.e., take part in 
reproduction). Atlantic cod can die shortly after spawning due to exhaustion or food defi-
ciency (Love, 1970). Failure of gametogenesis in the pre-spawning period may not lead to 
death in poor-condition producers: disturbance of vitellogenesis and trophoplastic growth or 
resorption of reproductive growth are often observed during sharp downturns in condition. 
This endangers populations, as it decreases or undermines recruitment. Finally, resorption 
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of reproductive products in fish may be the result of considerable water pollution 
(Lukyanenko, 1989; Evgenieva et al., 1989; Nemova & Vysotskaya, 2003; Vysotskaya & 
Nemova, 2008).

In section 4.4.1 we dealt with the “biological clock.” Now it is necessary to consider 
the “biological calendar” (i.e., consider the whole year). The duration of daylight is the 
cardinal trigger of rhythmic processes in fish whatever the latitude. Daylight allows fish, 
as well as birds and other animals, to compare their biological calendar. Daylight plays 
an essential role in the orientation of fish, preceding other factors such as climate 
(including temperature) in importance. Climatic factors can fluctuate considerably from 
year to year and from season to season. Furthermore, they may influence the population 
in a negative way. For instance, a strong decrease in water temperature may lead to death 
of fish or considerably reduce their metabolic activity. In fact, the effect of daylight on 
bird and fish migrations has been studied rather well (Fig. 4.35; Shulman, 1972a). In fish, 
a number of studies have been published on the role of daylight on fish behavior (Fontaine, 
1948; Hoar, 1953; Gerbilsky, 1956; Barannikova, 1975; Maksimovich, 1988, 1989). 
These studies mostly considered anadromous migrating fishes (Acipenseridae and 
Salmonidae). In the Salmonidae, it is sufficient to refer to the studies on smoltification 

Seasonal physiological cycle modifying the
system’s sensitivity to the signal stimulus

Factor controlling the seasonal physiological cycle
(macrostimulus: photoperiodism, biological calendar)

R
eg

ul
at

in
g 

sy
st

em

Premigratory state

Migration

Direct stimulus of migration
(microstimulus, signal factor:

changes of temperature,
current, water transparency,

food supply etc.)

CNS

Endocrine system
(correlates)

Metabolism,
including fat
metabolism

Figure 4.35  Role of light in bird and fish migrations. From Dolnik (1965), Shulman (1972a) and 
Shulman (1974).



104  Condition and Health Indicators of Exploited Marine Fishes

of Atlantic and Pacific salmon (Barannikova, 1975; Thorpe et al., 1982; Klyashtorin & 
Smirnov, 1990). A similar phenomenon also occurs in marine fish. The most important 
links between daylight and fish behavior involve the neuroendocrine and endocrine sys-
tems (Gerbilsky, 1958): hypothalamus–hypophysis (pituitary)–thyroid gland–adrenal 
cortex–gonads. All these systems transform and communicate the “light impulse” to all 
aspects of metabolism and through this they affect population behavior. It is known that 
an increase in duration of daylight stimulates development of reproductive products in 
birds (Dolnik, 1965) and warm-tolerant fish species (Gerbilsky, 1958). Conversely, a 
decrease in the duration of daylight impedes spawning and prompts fish to start pre-
wintering feeding. We have already explained how the direction and intensity of metab-
olism change during that time. Here we will discuss the significance of external 
(exogenous) and internal (endogenous) factors in the development of annual cycle 
periods. Obviously, these factors must be observed in permanent connection with each 
other. Duration of daylight is an initial exogenous factor. Endogenous factors promote 
the completion of metabolic processes, without which the annual cycle cannot take 
place. These endogenous factors must be specific for every period of the annual cycle. 
For instance, during the spawning period the endogenous factor is protein biosynthesis 
of reproductive tissue. During the pre-wintering phase, it is formation of fat stores, 
which provides for maintenance of the population during wintering. During wintering, 
it is structural and energy metabolism at the necessary (maintenance) level. In this 
regard, neuroendocrine hormones of the hypothalamus (catecholamines, glucocorti-
coids) and hypophysis (somatotropin and prolactin) play the most significant role in 
regulating the direction and intensity of protein and lipid metabolism (Lee & Meier, 
1967; Sautin & Romanenko, 1982; Sautin, 1989; Trenkler & Samenkova, 1990; Kassahn 
et al., 2009).

These endogenous factors strictly control population behavior. During the pre-spawning 
period, intensive feeding stimulates migration to spawning regions. During the spawning period, 
dispersion to these regions occurs, and for many species a decrease in feeding intensity 
takes place too. During post-spawning or pre-wintering periods, intensive feeding occurs 
and, as fat store accumulation decreases, food-obtaining reactions diminish and there is 
increased schooling. During migration, this causes formation of compact schools. In 
anchovy, migration is necessary (as noted above) to accumulate sufficient fat for use during 
wintering. Only after a sufficient level of fat stores is achieved do anchovy perceive temper-
ature reduction as an impulse to start migration. In previous work (Shulman, 1960a,b, 
1972a, 1974, 2002) we revealed that the average fat content in the adult anchovy population 
necessary to start migration should be higher than 14% of wet fish mass. Anchovy popula-
tions that do not attain this level of fat content (i.e., do not finish feeding) do not begin 
migration under any circumstances, even if temperature decreases strongly, remaining in 
Sea of Azov until December and dying because of low temperatures. Occurrences of such 
mass anchovy mortality have occurred in several years. For example in 1953, when fodder 
base of anchovy in Sea of Azov weakened greatly due to a sharp fall in river runoff (which 
brings nutrients necessary for plankton productivity). As a consequence, in November and 
December 1953, the northern coast of the Kerch Peninsula (Ukraine) was full of dead 
anchovies. At the end of the 1980s and the start of the 1990s, another mass death of anchovy 
was observed, due to low fodder base caused by invasion of the alien ctenophore Mnemiopsis 
leidyi (Studenikina et al., 1991). Fat content of anchovy which remain in the Sea of Azov 
and do not migrate is always lower than 14%. In this situation anchovy generally do not 
form migrating schools.
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Schematically, the interaction between external and internal factors leading to anchovy 
migration or not is illustrated in Fig. 4.35. This scheme is similar to the one Dolnik (1965) 
elaborated for migrating birds. The only difference is that, for fish, the temperature signal 
has more significance because it indicates the imminent approach of worsening weather in 
areas where schools are gathering for migration. In contrast to birds, fish usually migrate 
within the limits of the same climatic zone, and thus the warning signal has great signifi-
cance. Overall, it is clear that the transition to the migrating condition, as happens in other 
animals, occurs as a result of close interaction between exogenous and endogenous factors. 
Therefore, the external signal may not only involve temperature, but some other factors. For 
example, external factors related to cod migration in the southern Gulf of St Lawrence 
include photoperiodism, oxygen concentration, temperature, and food supply (Comeu et al., 
2002). There is also increasing evidence of endogenous seasonal variation in appetite. Cod 
migration is related to food obtained from consumption of herring and capelin. When food 
decreases, this causes an increase in appetite and motivates movement to feeding regions 
(Jobling, 1983). For example, food deficiency primes cod to start summer migration. In 
chinook salmon O. tshawytscha, Wagner and Congleton (2004) found that condition indica-
tors of smoltification and nutrition of juveniles included lipid concentration in plasma (tria-
cylglycerols and other fractions), glucose, total protein and cortisol, activity of lactate 
dehydrogenase, keratin kinase, and alkaline phosphatase. In rainbow trout O. mykiss, smolt-
ification indicator is ATP activity (Gale et al., 2009), while in Arctic char Salvelinus alpinus 
(Glemet et al., 1998) and bluefin tuna Thunnus thunnus in the Bay of Biscay (Goñi & 
Arrizabalaga, 2010), significant factors for migration were lipid store levels.

From this it is clear that the debate between scientists that took place during the1930s 
and 1940s regarding the superiority of exogenous over endogenous impulses for migra-
tion has no sense. In this debate, Marti (1932) considered that only temperature has sig-
nificance as an impulse for migration for Sea of Azov anchovy, whereas Lebedev (1940) 
tried to prove that the impulse to migrate is apparent only when anchovy reach a certain 
degree of fatness (expressed as “condition factor”) and that temperature did not trigger 
migration at all. Vorobiev (1945) was the first researcher who remarked on the unsubstan-
tiated nature of these “extreme” points of view. He considered that interaction between 
both factors is significant for the anchovy’s transition to the migrating condition, even 
though this was a purely speculative statement because at that time he had no data about 
fat store levels in anchovy populations. It was not until the 1950s when we revealed the 
level of fat content at which anchovy can perceive the temperature impulse (Shulman, 
1960a,b).

However, the interaction between internal and external factors is not simple. In Sea of 
Azov anchovy we revealed that there is a delicate “resetting” of both factors to each other 
(Shulman, 1960a,b, 1972, 1974). It may be named the principle of “dosage.” It was found 
that fish sensitivity (degree of external impulse, signal perception and its threshold value) is 
closely related with the same level of fat stores (Fig. 4.36).

Anchovy populations that have accumulated maximal fat stores (>22%) during the 
feeding process perceive the impulse to migrate when the water temperature in the Sea of 
Azov falls in the range 16–19°C; in this event, the temperature drop may be very small. 
Populations that have accumulated 17–20% fat perceive the impulse to migrate when there 
is a temperature drop in the range 13–15°C. Population which have accumulated 14–16% 
fat perceive the impulse to migrate only when the temperature drops in the range 9–12°C. 
Finally, populations that have accumulated less than 14% fat generally do not perceive a 
temperature drop as an impulse to migrate. Thus the migration of anchovy from the Sea of 



106  Condition and Health Indicators of Exploited Marine Fishes

Azov to the Black Sea through the Kerch Strait depends on fat stores accumulated by the 
populations before migration. Anchovies with higher fat stores can move out from the Sea 
of Azov by the end of September, whereas fish with average fat stores usually migrate 
during October and the poorest conditioned anchovies (lowest fat stores) in November. In 
addition, the data obtained during the expedition to the Sea of Azov at the beginning of 
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October 1995 showed that anchovy populations with the highest fat stores were near the 
Kerch Strait, i.e., they were more ready to start migrating (Fig. 4.37; Shchepkin et al., 2002; 
Shulman, 2002). Returning to the relationship between internal factors and fish behavior (in 
this case, fat store levels and density of migrating schools), fish with the highest level of fat 
stores migrate through the strait in extremely dense schools as they swim rigorously and in 
unison (Shulman, 1972a, 1974, 2002; Fig.  4.38). Conversely, the poorest-condition fish 
swim slowly in small schools, and their movement through the strait is sluggish. Knowledge 
of the regularity of the wintering migrations of Azov anchovy is important for predicting 
migration intensity and the periods when fish move through the Kerch Strait (Shulman, 
1972a, 1974, 2002). Fishery institutions in Kerch and Rostov carry out a survey every fall 
on anchovy condition in the Sea of Azov and, with the help of a hydrometeorological fore-
cast, advise on the rational development of the fishery (Shulman, 2002).

4.5.3	 Distribution

All that has been discussed in relation to behavior is also related to distribution. Localization 
in wintering areas, displacement of migrating schools, dispersal during spawning period, 
feeding concentrations, and migrating schools are all important features of distribution 
closely connected with population metabolism. Lets take as an example the Black Sea sprat. 
In contrast to anchovy, this fish does not undertake long-term migrations. Sprat populations 
localize in certain regions and undergo rather small movements: in fall, they move offshore 
for spawning that will take place in winter; in spring and summer, they move onshore for 
feeding. Despite weak migration behavior, sprat are characterized by the same pattern 
explained before for anchovy, as movements of sprat are also closely related to fat reserves. 
In years when nutritional conditions are good (and provide high level of fat stores), sprat 
form dense schools that move to the coastal zone. This can be observed in all shelf regions 
of the Black Sea, especially the northwestern part. Conversely, in years when food supply is 
poor (leading to low fat stores), schools are strongly dispersed, localized far from the coast, 
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and do not concentrate on the coastal zone. There is a close connection between sprat fatness 
during the summer period (feeding period) and value of the catch by fishery effort (Gusar 
et al., 1987). This shows the significance of fat stores in forming schools not only in migrating 
but also in non-migrating fish species. However, many studies completely ignore the signif-
icance of physiological condition in forming fish schools, these reports mostly concentrating 
on oceanographic and meteorological conditions (Shulman, 2002). Interesting results have 
been obtained regarding the connection between density of sprat schools and fat content 
(Fig. 4.39). Sprat fatness is lower in less dense groups, which have a strong attraction to 
artificial light, than in those groups captured with trawls (Gusar & Getmantsev, 1985; Gusar 
et al., 1987). The explanation is that fish in the less dense groups are hungry and the orienta-
tion reflex (Pavlov, 1932) develops strongly, while those fish captured in trawls have accu-
mulated large fat stores, are in dense schools and their feeding reflex is reduced (Fig. 4.40).
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An exact relationship between distribution and degree of feeding (fatness) has been 
revealed for different schools of Black Sea anchovy (Danilevsky, 1964; Chashchin & Axelev, 
1990) (Fig. 4.41), Caspian kilka Clupeonella engrauliformes (Rychagova, 1989), Japanese 
sardine Sardinops melanostictus (Shwidky, 1988), Pacific saira Cololabis saira (Filatov & 
Shwidky, 1988), yellowfish Pleurogrammus monopterygius (Vdovin & Shwidky, 1993), and 
walleye pollack Theragra chalcogramma (Shwidky & Vdovin, 1991). Recently Nikolsky 
et al. (2011) established a similar connection between lipid content of anchovy in the north-
western Black Sea at the end of fall feeding and the lipid content of anchovy near the 
Turkish coast at the same time. Lipid content in anchovy near the Turkish coast is generally 
higher. As anchovy migrate for wintering from northern regions to southern ones, these data 
show that schools arriving on the Turkish coast have more fat stores.

To finalize this section, it is important to consider a very significant phenomenon which 
we have not yet discussed. It is necessary to remember that populations are not only complex 
genetic and morphophysiological systems but energetic ones too. Thus not all individuals 
achieve the threshold required to perform the behavior stereotype. Swimming experiments 
on fish in a hydrodynamic tube can determine the exact distribution of individuals with 
regard to capacity for long-term resistance to stream velocity. During such experiments on 
Black Sea horse-mackerel, “leaders” are revealed that can swim for long periods in cruise 
mode (many hours, sometimes more than 24 hours) (Shulman et al., 1978). Conversely, a 
rather large fraction of the experimental group fail to maintain their position during the first 
hour (sometimes only after a few minutes) and these have been termed “recessive” individ-
uals or “outsiders.” Among horse-mackerel we found 16% of such recessives, and the same 
proportion was found in red mullet. It is possible that this consistency across species is not 
coincidental and reflects a more or less constant proportion of weak individuals in a 
population. In horse-mackerel, it is just these individuals that have the lowest value of 
energy-containing lipid fractions: triacylglycerols constituted 55 mg% in red muscle and 
32 mg% in white muscle compared with levels of 102 and 87 mg% in normally swimming 
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fish (Shulman et al., 1978). In addition, weak fish have much lower levels of other significant 
lipid components, primarily DHA in phosphatidylethanolamine of red and white muscle. 
Conversely, increase in lipid unsaturation relates positively with metabolic activity (Shulman & 
Yuneva, 1990). In analogous experiments in hydrodynamic tubes, divergence in swimming 
capacity of coho salmon Oncorhynchus kisutch juveniles was observed (Zaporozhets, 1991). 
Juveniles of the cichlid Aequidens pulcher with higher catecholamines (l-dopa and dopa-
mine) in the brain have a marked “searching” reaction (Nechaev et al., 1991). It is these 
juveniles that dominate in subpopulations of young fish and show more high activity for 
settling apart. We discussed the functional and biochemical heterogeneity of O. gorbuscha 
spawning group in section 4.5.1. During swimming in hydrodynamic tubes, blood parame-
ters of weak fishes are lower than normal ones (Belokopytin & Rakitskaya, 1981). The 
detailed “social–hierarchic” population structure of O. nerka was studied by Semenchenko 
(1988) and Chebanov (1994). These authors’ data show that the stress condition of subdom-
inant individuals negatively affects the number and quality of spawned generative products. 
Specific differences in growth rate in juvenile yellowfish cause the appearance of leaders 
and outsiders (Vdovin & Shwidky, 1993). In this case there is higher elimination of out-
siders. The problem of the interrelationships between hierarchies in fish has been presented 
by Thorpe et al. (1982).

The effect of physiological and biochemical parameters on behavior and distribution of 
Atlantic cod has been revealed by Love (1970) and Love et al. (1977). In this species greater 
locomotory activity is provided by higher glycogen and lipid content in liver, development 
of the vascular system (vascularization) and gemine pigment content, which is necessary for 
the supply of energy to contractile tissues with maximal efficiency. A good visible indicator 
of fish activity is pigmentation of red muscle, the degree of which changes in cod schools in 
different regions (Love, 1980). The most migratory form of cod exhibits a deep red color of 
these muscles (especially the lateral band). Such cod have been observed in regions to the 
south of Spitsbergen. The school undertakes long-term migration in the direction of North 
Cape and as far as Lofoten, where the fish spawn. Other schools, for example near the Faroe 
Bank, are located in specific regions and have a pale brown color of the lateral band in their 
red muscle. Cod populations in every region exhibit a Gaussian distribution of red muscle 
color, showing differences in fish condition as “leaders,” “outsiders” and intermediate 
forms. Azov anchovy too exhibit a Gaussian distribution of fatness during wintering migra-
tion through the Kerch Strait (Fig. 4.42; Shulman 1972a).
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5 � Influence of environmental  
and anthropogenic factors  
on fish condition

5.1	 Biotic factors

5.1.1	 Food consumption

Along with reproduction, the quantity and quality of prey consumed are key for fish 
condition. The dependence of condition on food consumption has been thoroughly demon-
strated experimentally and indirectly in the field, where there is usually a close relationship 
between food consumption and levels of energy reserves, whether in tropical fish such as 
Pomacentrus amboinensis in Australian waters (Kerrigan, 1994), cold-water fish such as 
cod in the northeastern Arctic (Jorgensen, 1992), or temperate fish species such as sprat in 
the Black Sea (Shulman et al., 2005). For example, in the tropical fish P. amboinensis, 
partially fed and fully fed juveniles attained not only large size but also weighed more and 
exhibited higher concentrations of total lipid in their tissues than starved and field fish 
(Kerrigan, 1994). These results support the close relationship between feeding history, 
somatic growth, and levels of energy reserves, principally total lipid concentration. In this 
regard, lipid class evaluation can reveal different feeding strategies. For example, Lança et al. 

Summary: Apart from the intrinsic factors that affect fish condition, which are observable dur-
ing ontogenesis, condition is affected by external factors including food availability, 
environmental variables, and anthropogenic factors. This chapter focuses on all these external 
factors. Among biotic factors, food consumption (food quantity and diet), density effects, and 
parasitism are major factors impinging on fish condition. Among abiotic factors, temperature, 
climate change, and oxygen deficiency are the most important. Anthropogenic factors such as 
pollution, fishing and aquaculture activities are also considered in this chapter.

Key words: food quantity, food quality, diet, parasites, sea warming, oxygen, trawling, 
aquaculture, contamination, climatic indices, winds, oxygen
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(2013) distinguished two feeding strategies in the sea lamprey Petromyzon marinus from the 
Portuguese west coast based on the analysis of lipid profile.

In previous sections we have considered that food (together with oxygen) constitutes one 
of the two basal channels connecting organisms and populations with the environment. Food 
provides organisms and populations with structural components from which they form and 
develop their bodies, and supplies them with energy substrates for numerous vital functions. 
Naturally, food is profoundly transformed once ingested. Therefore revealing the features of 
food supply involves not only information about quantity of consumed fodder organisms but 
also their quality or composition (content of proteins, lipids, carbohydrates, amino acids, fatty 
acids, vitamins, macroelements, and microelements), scope, intensity and efficiency of food 
consumption and transformation, and significance of food for survival and reproduction. Also 
we need to study food availability and intraspecific and interspecific competition for food.

Sometimes the combination of quantity and quality of food as well as the number of 
consumers (both the species under examination and competitors) and specific feeding 
conditions such as temperature (on which digestion rate depends) and transparency of the 
water (which influences the rate of hunting) is called “food supply” (Shulman & Love, 
1999). With regard to the relationship between fish condition and food consumption and 
the difficulties in evaluating fish consumption, the evaluation of lipid accumulated by the 
population at the end of the feeding period was proposed by Shulman and Love (1999) as an 
indirect surrogate approach to estimating food consumption. It should be borne in mind that 
in this case lipids cannot characterize the food supply over the whole annual cycle, but only 
in that period when lipids are accumulated rather than consumed.

The most informative results obtained on marine fish concern the relationship between 
number of available nutritive organisms and defined physiological and biochemical charac-
teristics of fish populations and individuals. It was shown many years ago in the Sea of Azov 
that there is an association between neutral lipid (fat) content (all data are percent per wet mass) 
in Azov Sea anchovy Engraulis encrasicolus maeoticus during the post-spawning feeding 
period and the zooplankton concentration (Shulman, 1972a, 1974) (Fig. 5.1). Similarly, the 
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highest fat content in Black Sea sprat Sprattus sprattus phalericus (Fig. 5.2) is found in the 
population that feeds in the region adjacent to the Danube estuary (Minyuk et al., 1997). 
This region has the largest abundance of nutrients, brought to the sea by Danube runoff, and 
from which phytoplankton and zooplankton develop. Also supporting this association are 
data on fat content in juvenile red mullet Mullus surmuletus in the Adriatic Sea along a 
gradient from the River Po delta (Fig. 5.3). The food supply gradient, which decreases from 
the River Po delta towards the Strait of Otranto, causes the fat content of juveniles to 
decrease from 3.9% in the delta region to 0.6% in the Strait of Otranto (Shulman, 1974). 
Food concentration also influences the lipid content of California sardine Sardinops caeru-
lea, as was demonstrated for larvae by Hakanson (1989a,b) and for adults by Lasker (1970) 
and Smith and Epple (1982). The same was found for other pelagic species from the same 
region by Bailey and Robison (1986).

Danube
estuary

Figure 5.2  Fat content of sprat in different regions of the Black Sea. From Minyuk et al. (1997).
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Figure 5.3  Fat content (%) of red mullet Mullus surmuletus juveniles in the Adriatic Sea. From Shulman 
(1972b).



114  Condition and Health Indicators of Exploited Marine Fishes

5.1.1.1	 Food quantity

The relationship between food quantity (i.e., the amount of food in a unit area of water) and 
fish condition has been established in several studies. Interannual variability in food quantity 
has been shown to affect the condition of fish. For example, interannual fluctuations in the 
liver condition index (LCI) of five length classes of northeast Arctic cod were non-linearly 
related to capelin stock biomass such that the LCI decreased rapidly when capelin stock 
biomass was below 1 million tonnes (Fig. 5.4; Yaragina & Marshall, 2000). Yaragina and 

Figure 5.4  Relationship between annual mean liver condition index (LCI, %) of northeast Arctic cod 
(Gadus morhua) and capelin (Mallotus villosus) stock biomass (1973–1996) in the Barents Sea. Solid 
lines indicate the regression relationships between the annual mean LCI and ln-transformed capelin stock 
biomass: (a) 41–50 cm cod, (b) 51–60 cm cod, (c) 61–70 cm cod, (d) 71–80 cm cod, and (e) 81–90 cm 
cod. From Yaragina & Marshall (2000).
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Marshall (2000) also showed that the LCI of north Arctic cod were positively correlated 
with the frequency of occurrence of capelin in cod stomachs. These results could explain the 
marked decline in condition factor in the last half of the 1980s, which coincided with a 
dramatic reduction in relative capelin abundance (Jorgensen, 1992).

Competition for food between populations and between individual fish often explains the 
differences in fish condition. In several cases, declines in condition of small pelagic plank-
tivorous fish have been associated with decreased food supply as a consequence of an 
increase in jellyfish species (Fig. 5.5), which are strong competitors of these fish for food 
resources. For example, in the 1980s a decrease in lipid content of sprat from 13% to 10% 
by the end of the feeding period was recorded in the Black Sea (Shulman et al., 2005). This 
drop was attributed to a reduction in the food supply for each fish as a consequence of the 
increase in the jellyfish species Aurelia aurita. Similarly, the introduction of another com-
petitor, the ctenophore Mnemiopsis leidyi, into the Black Sea in the late 1980s also damaged 
the food supply of sprat and provoked another decrease in their fat content (Shulman & 
Love, 1999). Mnemiopsis made an even greater impact on the nutritive base of anchovy.

For many temperate and cold-water species, lipid reserves may be vital for survival over 
the winter months as prey resources decline and this is why lipid storage typically 
increases just prior to the onset of winter. For example, cod has to cope with periodic food 
shortages in winter (Schwalme & Chouinard, 1999; Dutil et al., 2003). When deprivation or 
shortages occur, cod must draw energy from body reserves accumulated during periods 
when food was available (Black & Love, 1986; Lambert & Dutil, 1997a). As a result, cod 
exhibits marked seasonal variations in energy reserves, with peak somatic condition factors 
being reached in the fall (Lambert & Dutil, 1997b; Schwalme & Chouinard, 1999). 
Thereafter, declines in carcass and liver weights occur steadily throughout winter (December 
to April) when very little feeding occurs, the animals losing 25–27% of carcass weight and 
76–84% of liver dry weight during this time (Schwalme & Chouinard, 1999). About 90% of 
the loss in carcass and liver dry weight of overwintering Newfoundland cod is being used to 

Figure 5.5  Pelagia noctiluca, a jellyfish species in the Mediterranean Sea. Photo by Toni Font.
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meet metabolic energy requirements. For these authors, the condition factors and 
hepatosomatic indicators of cod in spring were low enough to suggest that winter starvation 
may cause mortality in this stock. In fact, in starved cod the lipid content of the liver can be 
as low as 2% (Love, 1958) when lipids normally constitute more than 50% of the liver 
weight of cod (Lambert & Dutil, 1997b). This pattern has also been shown in juvenile fish. 
For example, O-group sand smelt Atherina boyeri lays down fat prior to the onset of winter 
because during the winter the fish do not feed for some 100 days and rely on this fat for 
energy (Henderson et al., 1988). Similar results have been reported in freshwater fish inhab-
iting temperate and cold rivers. For example, a study on juvenile bluegill sunfish Lepomis 
macrochirus in northern United States rivers (Booth & Keast, 1986) showed that over the 
winter period (October–April) condition dropped and lipids were depleted to supply the 
energy requirements of inactive wintering fish. Condition was restored to summer levels 
within the following month and fat reserves were built up from 7 to 14% of body weight 
over the entire summer.

Not only food availability can determine food consumption but also behavior due to 
reproduction. For instance, Atlantic cod cease feeding for as much as 70 days during 
pre-spawning and much of the spawning period (Fordham & Trippel, 1999). The relation-
ship between condition and food availability exists not only for adults but has also been well 
documented in fish larvae. For example, RNA/DNA ratios of anchovy larvae from the 
Catalan Sea showed a positive correlation with food availability (fluorescence and micro-
zooplankton organic matter). Nevertheless, this relationship was not observed with anchovy 
larvae from the Gulf of Lions (García et al., 1998).

For small pelagic species, the seasonality in condition often matches primary produc-
tivity. For example, the hepatosomatic index of sardine in the northeast Mediterranean 
matched the spring burst of primary productivity and was followed by fluctuations in 
somatic condition and mesenteric fat by a 2-month lag (Ganias et al., 2007).

Notwithstanding the seasonal pattern of condition of many shallow-water species, 
seasonal variation in feeding and condition appear small or nonexistent in deep-sea top 
predators such as macrourids (Drazen, 2002). The lack of seasonality has been attributed to 
many factors including the ability of deep-sea predators to switch to whatever food is avail-
able or the absence of seasonality in reproduction and growth of these fish (Drazen, 2002). 
Also in many studies food is not observed as a limiting condition in juveniles in the highly 
productive estuaries, indicating that prey resources are often likely adequate for newly 
settled fish in these highly productive habitats. For example, the RNA/DNA ratio of southern 
flounder (Paralichthys lethostigma) from the Galveston Bay Estuary (Texas) was well 
above a minimum ratio for fed larvae of winter flounder and starved Japanese flounder, 
suggesting food was not a limiting factor in any of the bays or habitats sampled (Fig. 5.6; 
Glass et al., 2008). Moreover, this study showed that the RNA/DNA ratio of the individuals 
indicated that over 90% of the southern flounder were in the same nutritional condition as 
well-fed fish from laboratory studies (fed versus starved). Also Rooker and Holt (1997) 
reported the RNA/DNA ratio of wild red drum from Texas estuaries and found that the 
nutritional condition of wild-caught individuals was well above the minimum or starved 
baseline estimate.

It is also possible to consider a wider geographical scale. For example, zooplankton 
concentration in the Sea of Azov (200–500 mg/m3) is higher than that in the Black Sea 
(100–200 mg/m3), and this is higher than that in the Mediterranean (average 50 mg/m3) 
(Zenkevich, 1963). Fatness of three subspecies of anchovy (Engraulis encrasicolus maeoticus, 
E. e. ponticus and E. e. mediterraneus) at the end of feeding periods were found to be 
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20–25%, 10–15% and less than 7% in the Sea of Azov, Black Sea and Mediterranean, 
respectively (Shulman, 1974). Compare this with the zooplankton concentration in the 
Baltic and Caspian seas (200–300 mg/m3) (Zenkevich, 1963) and the fatness of Baltic sprat 
Sprattus sprattus (Biryukov, 1980; Kolakovska et al., 2003) and Caspian kilka Clupeonella 
engrauliformis (Rychagova, 1989), which both have 15–20% fat content, as well as Sea of 
Azov kilka Clupeonella cultiventris, which has fatness close to that of Azov anchovy. Recent 
research by Lloret et al. (2005) showed that levels of accumulated lipids in Pagellus acarne 
and P. erythrinus, as well as Diplodus sargus, are higher in the Gulf of Lions than in the 
Catalan Sea. It is known that Gulf of Lions is more productive than the Catalan Sea as it is 
enriched by nutrients from the strong wind mixing and from the Rhone river flow. It is 
possible to conclude that each sea basin (more exactly its pelagic zone) has specific trophic 
capacity which may supply pelagic fish populations with specific fat stores.

Although many of the examples cited above refer to the so-called “fatty” fish (those with 
large lipid stores that accumulate principally in the muscle), “lean” fish (low muscle lipid 
stores) such as Atlantic cod Gadus morhua, which accumulates its energy stores in the form 
of lipids and glycogen in liver, also show a relationship between fat accumulation and food 
quantity. For example, Love (1974) and Black and Love (1986), who studied cod in a wide 
area of the northern Atlantic, showed that population inhabiting the Faroe Bank region has 
maximal energy stores. This region is strongly affected by upwelling which transports large 
quantities of food. In this sense, data on hepatosomatic index of Atlantic cod showed that 
accumulated energy stores are related to stock numbers of capelin Mallotus villosus (the 
basal food of cod) in the Norwegian and Barents seas (Marshall et al., 1999, 2000) 
Aditionally, several studies have also shown that interannual fluctuations of fat content are 
closely related with the environment (primarily with nutrition factor).

5.1.1.2	 Food quality (diet)

The second important part of investigations dealing with fish food is the quality (composition) 
of the food, particularly the characterization of the essential components and their 
physiological effects. This comprises the relation between biochemical characteristics of 
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fodder organisms consumed by fish and the biochemical characteristics of the corresponding 
fish populations. The most relevant investigations deal with the influence of food on the 
composition of fish lipids. This problem is the subject of classic work by Lovern (1964), 
Ackman (1967, 1989, 2005), Sargent (1976) and Sargent et al. (1987, 1995). Yet in the 
first half of the last century it was found that fatty acid composition of fish lipids has the 
same composition as that of food (Lovern, 1964). This relates especially to neutral lipids 
(triglycerides, fats) stored by fish during the feeding period. Their composition includes 
saturated, monoenic, and dienic acids (main ones listed in Table 5.1, which have high cal-
orific value and are used for energy requirements of organisms). Polyenic (polyunsatu-
rated) fatty acids are mainly accumulated in the form of polar lipids (phospholipids): 
phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and others. Their 
initial forms are linolenic (n-3) and linoleic (n-6) fatty acids. It was shown that marine fish 
contain mainly linolenic acids and freshwater fish mainly linoleic acids (Lovern, 1964). 
This is a reflection of lipid composition in algae; in marine waters they synthesize lino-
lenic acids (18:3 n-3), while in fresh water they synthesize linoleic acids (18:2 n-6). These 
acids are then transmitted through trophic chains to higher trophic levels (fish and even 
birds and mammals). During the processes of elongation and desaturation, the linolenic 
and linoleic acids are transformed into polyenic or polyunsaturated fatty acids (PUFAs), 
especially highly unsaturated fatty acids (HUFAs). In freshwater fish these comprise ara-
chidonic acid 20:4 n-6 and others. However, as Sargent (1976, 1995), Fraser et al. (1989), 
Sargent et al. (1995), and Bell and Sargent (1996) found, marine fish have lost their 
capacity to transform linolenic and linoleic acids to polyenic acids, so they obtain PUFAs 
and HUFAs only from food and therefore such acids are essential for marine fish. The 
most significant are eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-
3). They are important constituents of the bilayers comprising cellular and subcellular 
membranes, and are essential for ion transport and for regulating the viscosity of mem-
branes (and consequently metabolic and functional activity of the whole body). Important 
indicators of this activity include not only their content in phospholipids of tissues, cells, 
membranes and organelles but their ratio to each other [coefficients Σ(n-3)/Σ(n-6) and 
22:6n-3/20:5n-3]. For marine fish, comparison of their polyenic acid composition with 
that of food shows preliminary consumption of defined fodder organisms (Sargent et al., 

Table 5.1  Seasonal variation in the principal fatty acids (%) in the 
muscle of capelin Mallotus villosus

Fatty acid January August January August

14:0 4.8 5.9 3.8 7.6
16:0 22.1 25.1 19.3 23.0
16:1 8.5 8.3 6.9 7.8
18:0 1.8 1.2 1.4 1.1
18:1 26.0 28.0 20.8 22.4
18:2 1.4 1.8 1.4 1.7
18:4 1.4 4.6 1.5 4.2
20:1 2.3 1.3 4.1 4.4
20:5 13.8 10.8 16.8 10.7
22:1 2.0 1.0 3.8 4.4
22:6 11.3 6.7 15.4 8.3

Source: after Henderson et al. (1984) and Shulman & Love (1999).
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1995; Iverson et al., 2002). With regard to neutral lipids, it must be remembered that wax 
ethers play an important role in feeding in some marine fish (Sargent, 1976; Henderson 
et  al., 1984. Fish consume wax ethers when they eat copepods and retain them in this form 
for long periods until they are transformed into triglycerides (when triglycerides stores are 
consumed).

The influence of other food components on the biochemical composition of marine fish 
has been less well studied. Proteins of fodder organisms significantly affect the protein and 
nitrogenous metabolism of fish. The importance of essential amino acids as a stimulant of 
fish growth was shown by Cowey et al. (1962). The presence of essential amino acids in a 
fish characterizes its nutrition. The processes of transamination and desamination have great 
significance in protein and nitrogenous anabolism and catabolism, which are closely 
connected with lipogenesis and gluconeogenesis, i.e., accumulation of fats and glycogens 
(Wagner & Congleton, 2004).

Overall, it is clear that differences in fish condition are explained not only by the quantity 
of food consumed but also by variations in diet because different prey have different quality/
energetic content. Although in most studies the nutritional quality of prey is assumed to be 
constant over space and time, species can exhibit considerable variation in their value as 
prey items depending on length/age, season or year. Thus, for example, a significant positive 
relationship was found between length and total lipid content of Atlantic herring (Clupea 
harengus) from the Bay of Fundy, Canada (Lane et al., 2011). Atlantic herring from differ-
ent years and seasons also had significantly different fatty acid signatures, with summer fish 
being significantly fatter than winter fish.

The diet of cod in Newfoundland and Labrador waters affects not only growth and 
reproduction but also fish condition (Rose & O’Driscoll, 2002; Sherwood et al., 2007). 
According to Sherwood et al. (2007) the benefits of a more pelagic diet in medium-sized 
(30–69 cm) cod included higher somatic condition, higher liver index (lipid stores), and 
greater spawning potential (decreased incidence of atresia). In some cases, the abundance of 
a particular prey determines the condition of a fish, as occurs with cod and capelin. Several 
examples show that optimum abundance of capelin is not a luxury but a necessity for cod, 
and that without abundance of capelin the growth, condition, and reproductive potential of 
northern cod will decline (Rose & O’Driscoll, 2002). Hence, seasonally adjusted cod liver 
condition in Newfoundland waters was strongly associated with capelin availability, and the 
liver index was highly correlated with gonad size in mature females (Rose & O’Driscoll, 
2002). Cod of the northern stock in the Hawke Channel in the 1990s were in poor condition 
compared with those from the same stock further south because of lower availability of cap-
elin in the north. The main food item of cod in the Hawke Channel was pandalid shrimp, 
which are not such a good source of lipid for cod as capelin or herring Clupea harengus 
(Rose & O’Driscoll, 2002). According to these authors, shrimp represent a good source of 
protein but not lipid, and are therefore a relatively low-energy food source for cod. 
Furthermore, whole shrimp contain much indigestible chitin, which may lower their overall 
digestibility and nutritional value to cod. Accordingly, the authors suggested that the 
inability of Hawke Channel cod to regain condition quickly after spawning relates directly 
to the lack of capelin in adjacent waters. In conclusion, the evidence suggests that northern 
cod were in poor condition in Newfoundland waters in the 1990s and that some populations 
suffered poor recruitment and high levels of adult mortality where capelin were not abun-
dant. In view of the links between capelin availability and cod diet, growth, condition, and 
reproductive potential, the authors suggested that northern cod stock rebuilding requires 
capelin.
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In the Gulf of Lions (northwest Mediterranean), diet was also shown to affect condition 
and abundance of juvenile European hake (Ferraton et al., 2007). This study revealed that 
spatial and annual variability in diet composition of juveniles (Fig. 5.7) significantly influ-
enced the condition of hake. Hence, the relative condition of juveniles feeding on mysids 
and euphausiids in a given year was higher than that of juveniles that preyed on natantid 
shrimps a year after. Thus for example, in 2003, juvenile hake located in deep waters had a 
lower condition factor than those living in shallow waters (Ferraton et al., 2007). According 

Figure 5.7  Hake (Merluccius merluccius) in the Gulf of Lions (northwest Mediterranean). Spatial and 
annual variability in diet composition (%IRI) of juveniles of 10–14 cm total length sampled in (a) 2002 
and (b) 2003. (One area not shown in 2003 because of small sample size, n = 3.) From Ferraton et al. 
(2007).

(a)

(b)
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to the authors, the main difference in the feeding of juveniles in deep waters was a diet 
composed mainly of shrimps in 2003, which provided a less energetic source of food than 
fish, the main prey in shallow waters, and small crustaceans (mysids and euphausiids), the 
main prey in deep waters in 2002, when no bathymetric differences in condition of juvenile 
hake were found (Ferraton et al., 2007). Considering these results, Ferraton et al. (2007) 
hypothesized that enhanced survival after benthic settlement of hake could be partly related 
to the availability of an adequate food supply in a given year. Similar to this, Paul et al. 
(1990) revealed for pollock (Theragra chalcogramma) in the North Pacific that the poorest 
growth in weight is shown by pollock fed amphipods, the prey with the lowest energy 
content, while the best growth is obtained by pollock fed herring, which have the highest 
energy content.

In the case of the Iberian sardine (Sardina pilchardus) it was shown that dietary compo-
sition varied seasonally and geographically and depended to some extent on the prevailing 
food conditions, and these differences were strong enough to be reflected in the lipid content 
of fish, which can have a strong impact on reproduction success for this species (Garrido 
et al., 2008). Also, two coral reef fish (Pomacentrus moluccensis and Abudefduf whitleyi) 
from the Great Coral Reef feeding extensively on coral eggs, which have a very high lipid 
content (50–70%), amassed considerable lipid stores during the period of coral spawning 
(Fig. 5.8; Pratchett et al., 2001). Thus, the pulse of lipid-rich prey provided by mass spawn-
ing of corals to particular coral reef fish contributes to the increase in energy reserves of 
these fish, which according to the authors could greatly improve the quality and survivor-
ship of their progeny.

Diet is also an important factor influencing condition of capelin. The spatial and interan-
nual changes in the diet of capelin, which are linked to sea temperature (Fig. 5.9), influences 
the condition of this species in the North Atlantic (Orlova et al., 2010). Fat content was 
highest in northeastern regions and strongly influenced by capelin diet. Capelin appears to 
select for the Arctic copepod Calanus glacialis, which is considerably larger and contains 
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more lipid than the Atlantic-boreal C. finmarchicus (Scott et al., 2002), and for larger (and 
more fat-rich) life stages (Orlova et al., 2010).

Of all the constituents of the diet of fish, it seems that the amount of essential fatty acids 
(EFAs) plays an important role in determining condition. EFAs are produced only by plants 
and must be obtained by fish through their diet because they are required as components of 
hormones and cell membranes and thus deficiency can limit the reproduction of marine 
invertebrates and fish. For example, natural variability in EFA content of common wolffish 
Anarhichas lupus eggs correlates with hatching and survival rates (Halfyard et al., 2001). 
Furthermore, field-collected Atlantic herring Clupea harengus larvae show order of magni-
tude variability in EFA and lipid content that correlates with dietary EFA restriction and 
poor nutritional condition (Fraser et al., 1987). Larvae of other fish species show similar 
variability in lipid content that correlates with diet quality (Lochmann et al., 1995). The 
potential for EFA limitation is likely highest for larval and juvenile fish because rapid 
growth produces high EFA requirements (Tocher, 2003). Fat content, which is an important 
indicator of capelin reproductive potential and their food value for predators, was strongly 
influenced by capelin diet (Orlova et al., 2010).

It also seems that on some occasions condition is related to prey diversity. Thus, De 
Raedemaecker et al. (2011) found a significant correlation between a morphological 
condition index and prey diversity in the gut, suggesting that fish which specialize on a 
limited number of prey items (perhaps due to a greater abundance of certain prey) may do 
better than fish which feed on a wide range of prey types.

Sometimes, low quantity and quality of prey may coincide, leading to a critical 
situation for the condition of their predators. For example, declines in the condition of 
the coral-feeding butterflyfish Chaetodon lunatus in Australian waters occurred in 

Figure 5.9  Capelin (Mallotus villosus) in the Barents Sea. Capelin feeding intensity and dietary 
composition in a very cold year (1978). Size of circle indicates stomach fullness index (SFI) and shading 
of each circular chart indicates mean percentage (by mass) contribution of each prey group. All size 
classes are combined into one circular chart per station. Roman numeral in each circle indicates 
sampling month. From Orlova et al. (2010).
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conjunction with a period of coral bleaching that provoked a reduction in the quantity 
and quality of coral prey (Pratchett et al., 2004). Conversely, when high quantity and 
quality of prey coincide, condition increases greatly. Furthermore, increased condition of 
wild fish associated with farms has been observed in Mediterranean horse-mackerel 
(Trachurus mediterraneus) by Fernández-Jover et al. (2007) and in saithe (Pollachius 
virens) by Skog et al. (2003) because of direct feeding of fish on pellets lost from farms. 
In fact, net-cage fish farms attract a great number of wild fish, altering their behavior and 
possibly their physiology.

5.1.2	 Density effects on condition

Occasionally, density effects due to competition for food are behind the inverse relation 
between condition and abundance that has been observed in a number of stocks. Evidence 
of density-dependent effects on the condition factor of North Sea sole (Solea solea) has been 
reported by Rijnsdorp et al. (1991), whereas in the Pacific Ocean the decreases in fatness of 
Japanese sardines were strongly related to the cumulative sum of population abundance that 
each year-class experienced (Kawabata et al., 2011). It is thought that insufficient food 
owing to the density-dependent effect of an abundant population at feeding grounds resulted 
in a decrease in the growth rate for small-bodied sardines that invest their energy intake in 
body growth, and a decrease in fatness for large-bodied adults that accumulate fat for the 
next reproduction. Similar to this, Vasconcelos et al. (2009) indicated that the negative 
relationships between the RNA/DNA ratio and juvenile densities of sole (Solea solea) and 
flounder (Platichthys flesus) in several estuaries along the Portuguese coast were due to 
density-dependent processes that may exist in estuarine areas with higher juvenile densities. 
In laboratory experiments, Lambert and Dutil (2000) also found a negative effect of increased 
stocking density of cod on the condition index and postulated decreased food intake as the 
cause. On some occasions, the density effects depend on other factors such as depth. 
Furthermore, adult energetic condition at the end of the main feeding period significantly 
correlates with variation in catches of sardine (Sardina pilchardus) on Portuguese coasts 
one year later (Rosa et al., 2010).

Another example is that of sprat in the Black Sea. The outburst of sprat numbers in the 
Black Sea at the beginning of the 1980s resulted in strong decreases in its fat stores. The 
competition between different species also has great importance. The outbreaks of medusa 
Aurelia aurita at the beginning of the 1980s and the mass invasion at the end of that decade 
by the ctenophore Mnemiopsis leidyi undermined the fodder base of planktivorous fish and 
decreased sprat fatness at the end of the feeding period from 15.5% to 9% (Shulman et al., 
2009b; Minyuk et al., 1997). An even higher impact was observed with Mnemiopsis on 
anchovy in the Sea of Azov: anchovy fatness decreased from 20–30% to 10–15% 
(Studenikina et al., 1991), resulting in collapse of the fishery.

However, other studies did not find any density-dependent effect on condition, possible 
because the abundance of prey may fluctuate as much as the abundance of the stock, thereby 
obscuring a possible density-dependent condition regulatory mechanism (Jorgensen, 1992). 
For example, no evidence of density-dependent effects was observed in the condition of 
North Sea cod (Rijnsdorp et al., 1991). And some studies even indicated a positive relation-
ship between stock density and fish condition, supporting the idea that individuals aggregate 
selectively at areas that provide optimal feeding conditions, and that optimal habitats enable 
greater accumulation of body lipid reserves than do suboptimal habitats. In the North Sea, 
for example, the hepatosomatic index of haddock was better at stations where this species 
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were most abundant and where temperature was low (Fig. 5.10; Hiddink et al., 2005). The 
authors hypothesized that energy intake was higher at the high-abundance locations because 
more food was available per fish at these locations. According to them, despite the fact that 
no data describing food availability for haddock were collected, since the better condition 
could not be explained by less energy expenditure in relation to temperature, energy intake 
must have been higher at the high-abundance locations. Therefore, it is likely that more 
food was available per fish at the high-abundance locations. Similar to this, Francis (1997) 
found that a site supporting the highest density of juvenile snapper Pagrus auratus in New 
Zealand waters had the highest hepatosomatic index, suggesting that juvenile snapper 
aggregate at selected sites that provide the best feeding conditions. Further, Jørgensen et al. 
(1993) found that the condition of Arctic char (Salvelinus alpinus) reared at high stocking 
densities improved with time, while the condition of the same fish stocked at low densities 
for the same time did not. Further, Shulman et al. (2005) found that the dynamics of fat 
content in Black Sea sprat was, to a large degree, similar to the long-term changes in stock 
biomass of this fish. The positive relationship between fat content and sprat biomass was 
attributed to the food supply: during periods of high food supply, the condition increased 
with the consequent and immediate benefits for the productivity of this short-lived species 
(Shulman et al., 2005).
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5.1.3	 Parasites

Parasitic infections in fish are a specific form of interspecific cooperation. Parasitism and 
its potential negative influence on fish may be considered a natural factor, developed 
during phylogenesis, and is a significant component of the original ecosystem of parasite 
and host. Parasites (Fig. 5.11) can disturb the intensity and efficiency of food utilization 
in fish, worsen their physiological condition, and decrease abundance, biomass and pro-
duction of populations. On the other hand, they constitute a catalyst for natural selection, 
regulating the proportion of each fish species and population in the marine and freshwater 
ecosystems.

Low energy reserves decrease the immunity of fish, increasing mortality through disease 
(Mikryakov, 1978, and other examples). Several studies have established an inverse 
relationship between condition factor and disease prevalence. In laboratory experiments, for 
example, no mortality or sign of disease was observed among cod with the highest condition 
factors, whereas all cod with the lowest condition factors died within a short period of time 
when refed following a period of food deprivation (Dutil et al., 2006). Among diseases, 

Figure 5.11  Parasitic copepod attached to the gill of European hake Merluccius merluccius. Photo by 
Dolors Ferrer.
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parasites have been quite extensively studied in relation to fish condition. Fish serve as hosts 
to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life-
cycle strategies (Barber et al., 2000). Several studies have shown that parasites can reduce 
growth, fecundity and survival, and change behavior and sexual characteristics of the 
infected host, and these changes could have significant consequences not only at the 
individual level but also at population, community and ecosystem levels (Barber et al., 2000; 
Marcogliese, 2002; Iwanowicz, 2011). Host–parasite relationships are often unbalanced and 
parasites can severely compromise the condition of their hosts and even kill them (Jones 
et al., 2005). Most of the studies showing the effects of parasites on condition of wild fish 
populations have been carried out in freshwater ecosystems (see, for example, Neff & 
Cargnelli, 2004; Moreira et al., 2010; Heins & Baker, 2011; Ferguson et al., 2012). However, 
parasites are often overlooked as a factor affecting fish condition and stock productivity in 
marine ecosystems (Lloret et al., 2012). In marine ecosystems, most of the severe fish para-
sitic infections have been reported in aquaculture, normally related to the artificial culture 
conditions, where fish densities are abnormally high (Rohde & Littlewood, 2005). The 
effects of parasites on wild marine fish populations are often underestimated and the 
relationships between parasitism, condition, reproduction, and natural mortality of marine 
exploited species remains largely unknown.

Basic measurements of parasite infection include the prevalence (percentage of indi-
viduals of a particular host species infected by a particular parasite species), intensity 
(number of individuals of a particular parasite species in a single infected host), and 
abundance (total number of individuals of a particular parasite species in a sample of a 
particular host species divided by the total number of individuals of the host species 
examined) (Bush et al., 1997).

Several studies have revealed negative relationships between high parasite loads and 
condition of marine fish (Adlard & Lester, 1994; Faliex & Morand, 1994; Williams & Jones, 
1994; Durieux et al., 2007; Fogelman et al., 2009). Pelagic fish constitute well-known 
examples where parasites affect the energy reserves of the individuals and populations. In 
the case of anchovy in the Black Sea, the presence of parasites affects anchovy’s lipid 
content (Shchepkina, 1985), besides the effect of food supply (Shulman, 1974, 2002). In 
particular, infection by helminths is an important factor influencing the lipid content of the 
Black Sea anchovy population. Individuals with high levels of parasitism exhibit lower 
levels of lipid content, particularly triglycerides, which reduces the state of readiness of the 
anchovy for migration and wintering and may therefore influence the reproduction of this 
species (Shchepkina, 1985). Shchepkina (1980a,b) showed that infestation of Black Sea 
anchovy larvae by the nematode Controcaecum aduncum considerably decreases triglyc-
eride content in fish liver and red and white muscle (Fig. 5.12). The trematode Cryptocotyle 
concavum causes a similar effect on round goby Neogobius melanostomus (Fig.  5.13). 
Decrease in triglyceride content varies in both cases from 25 to 71% in relation to tissue and 
studied species. Calculations show that production of total lipids is less than 20–25% in 
infested fish in comparison with ones that are free of parasites.

In addition, parasitism affects the condition of herring in the North Atlantic. On the 
individual macroscopic level, infection by a fungus-like protozoan in Norwegian spring-
spawning herring significantly reduced not only body condition but also reproductive 
capacity (Kramer-Schadt et al., 2010). There is a strong seasonality in infection preva-
lence within years, with peaks in summer and winter. Summer peaks consisted of infected 
fish unable to follow the migration routes to the feeding grounds (Kramer-Schadt et al., 
2010).
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Guryanova (1980) and Sidorov (1983) have shown that infestation with helminths such 
as plerocercoids of the broad tapeworm Diphyllobothrium vogeli leads to changes in 
phospholipid content and composition of tissues of stickleback Pungitius pungitius and 
turbot Scophthalmus maximus. Most pronounced is the drop in phosphatidylcholine and, 
occasionally, phosphatidylethanolamine concentrations. Such a disturbed phospholipid 
status of biomembranes usually affects permeability. It has also been shown that parasites 
selectively absorb essential amino acids of the host (Sidorov & Guryanova, 1981). In the 
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developing eggs of Atlantic salmon Salmo salar infected with saprolegniasis, the store of 
glycogen was found to be depleted, with consequent loss of viable eggs (Timeyko, 1992). 
Carp Cyprinus carpio infested with ectoparasites exhibits reduces oxygen consumption 
whereas the content of hemoglobin in the blood and the activity of oxidative enzymes in 
other tissues decline (Kititsina & Kurovskaya, 1991). On the other hand, good feeding 
conditions increase the resistance of fish to diseases.

In the Indian Ocean, the condition of sardines (Sardinella spp.) is affected by parasites. 
The condition factor calculated for sardines infected by the copepod Peroderma sardinellae 
was 0.3, whereas for non-parasitized sardines it was 0.9. Furthermore, infected sardines had 
retarded maturity conditions when compared with non-parasitized fishes in similar length 
groups (Ranjitsingh & Padmalatha, 1997).

Another example of parasite impact on fish condition is that of Arctic cod. Arctic cod 
infected by a hematophagous parasite had significantly lower condition factor, hepatic and 
gonadal somatic indicators, and hematocrit than parasitized fish (Khan et al., 1997). Females 
harbored the largest numbers of the parasite and showed the most dramatic changes. This 
result parallels that for other gadoids parasitized with hematophagous parasites, which 
impair growth and reproduction (Khan et al., 1997).

Other species provide only indirect examples of the effects of parasitism on fish condition. 
This is the case with ocean sunfish Mola mola (Fig. 5.14), the world’s heaviest bony fish 
(Macías et al., 2004). The ocean sunfish is often infected by a high number of parasites, 
including larvae of the cestode Molicola horridus (Gibson et al., 2011). Some studies 
indicate that the heavy parasite loads observed in ocean sunfish apparently hamper its liver 
function and condition, although the exact degree of damage is difficult to estimate (reviewed 
by Lloret et al., 2012).

Notwithstanding all these studies supporting the negative effects of parasites on the energy 
reserves of fish, other studies did not find any relationship between parasitism and fish 
condition. Thus, for example, studies on European eel, European hake, and lesser-spotted 

Figure 5.14  Sunfish Mola mola, a highly parasitized fish. Photo by Bernd Mörker.
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catshark in the Mediterranean Sea indicate that parasites found in these species do not affect 
their energy reserves, even in the case of the highly parasitized lesser-spotted catshark 
Scyliorhinus canicula (Fig. 5.15), or in eels affected by an introduced parasite (Lloret et al., 
2012). In the case of the small-spotted catshark, one of the most abundant sharks in the 
by-catch of trawl fishery, it has been shown that the condition of this species in the 
Mediterranean is unaffected by its high parasite load. In the case of the eel, the introduced 
hematophagous parasite Anguillicoloides crassus is known to damage the swimbladder of 
the eel and affect its physiology, which would have implications for eel reproduction. 
Migration of infected eels will be impaired because spawners will have difficulties crossing 
the Atlantic Ocean and reaching the breeding sites (Kirk, 2003; Kennedy, 2007). Despite 
this, it remains difficult to demonstrate a negative effect on the condition of the infected eel 
(Barus & Prokes, 1996; Koops & Hartmann, 1989), their hepatosomatic index (Möller et al., 
1991), or cell count or hematocrit (see Boon et al., 1989; Palikova & Navratil, 2001 or 
Kangur et al., 2010). This suggests that naturally infected eels are able to compensate the 
costs induced by the parasites. In the case of amberjacks (Seriola spp.), high intensities of 
skin or gill parasites have been reported to cause outbreaks of monogeneans in cultured 
individuals (see Whittington & Chisholm, 2008 for revision). Although experiments revealed 
that up to 100% of the fish living in affected tanks died, fish condition factors were normal 
and only a decrease in hematocrit was found as these monogeneans are blood-feeders 
(Montero et al., 2004). Another example that failed to provide a link between condition and 
parasitism is that of European hake in the Mediterranean. The high parasite loads and diver-
sity of parasites affecting this species do not affect the Le Cren condition factor, neither the 
hepatosomatic index nor the lipid content in the liver of this species (reviewed by Lloret et 
al., 2012). Nevertheless, high parasite loads in European hake negatively affects the gonad-
osomatic index of this species, particularly during spawning (Fig. 5.16), thus indicating a 
negative impact of the parasites on the reproductive potential of hake.

Figure 5.15  Catshark Scyliorhinus canicula, a highly parasitized elasmobranch. Photo by  
Natàlia Martínez.
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In some cases the opposite could be expected: fish able to feed more intensively are 
prone to incorporate more parasites during the feeding process and improve their condition, 
and in this case one could imagine a positive relationship between fish parasitism and 
condition.

Finally, it is important to note that there is considerable variation in parasite virulence and 
host tolerance which may have a genetic and/or environmental basis. In a recent study on the 
effects of a striking mouth-dwelling, blood-feeding isopod parasite on the life history and 
physiological condition of two Mediterranean populations of the coastal fish Lithognathus 
mormyrus, it was found that the growth and hepatosomatic index of fish in a heavily human-
exploited population were severely impacted by this parasite (Sala-Bozano et al., 2012). In 
the exploited population, the parasite load explained 34.4% of the variation in hepatoso-
matic index. Conversely, the parasite showed negligible virulence in fish close to a marine 
protected area: the parasite load only explained 0.3% of the variation in hepatosomatic index 
(Sala-Bozano et al., 2012).

5.2	 Abiotic factors

Several studies have shown the variability in the condition of pelagic and demersal fishes 
associated with environmental variables. Among the environmental variables studied, water 
temperature (including climate change/sea warming) and oxygen deficiency have been 
largely considered as the main factors impinging on condition of fish.
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Figure 5.16  Average gonadosomatic index (GSI) of female European hake (Merluccius merluccius) 
in different states of maturity, infected and uninfected by copepods (NW Mediterranean). D: developing, 
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5.2.1	 Temperature

Temperature is a basic characteristic of the environment that impinges on the biology and 
physiology of fish and other ectotherms (affects rates and direction of metabolic processes, 
behavior and distribution, etc.). From Fry (1957) and Brett (1979), temperature is the main 
factor controlling the vitality of aquatic poikilotherms. According to the van ’t Hoff–
Arrhenius law, all processes in aquatic poikilotherms at the borders of the biokinetic zone 
have a direct dependence on temperature (Prosser, 1967, 1991; Schmidt-Nielsen, 1983; 
Ivleva, 1983). It is worth remembering that the Q

10
 for aquatic animals during a temperature 

change of 10°C is on average 2.2 (fluctuations usually are in the limits 2.0–2.5) (Winberg, 
1956, 1960; Brett, 1973, 1979; Belokopytin & Shulman, 1987).

Environmental temperature has a great effect on rhythmic processes, and this is related to 
the completion of annual cycles (Shulman & Love, 1999), tissue enzyme activity (Hochachka & 
Somero, 1973, 1984, 2002), structural and functional features of lipids (e.g., degree of 
unsaturation of their fatty acid ethers; Ackman, 1967; Kreps, 1981), and energy provision 
for locomotion (Hochachka & Somero, 1973, 1984, 2002), among others. It must be remem-
bered that during study of the ecology of all aquatic ectotherms including fish, each 
physiological and biochemical indicator needs to be defined at a certain temperature that is 
appropriate to the habitat and period of the annual cycle, i.e., the temperature the fish is actu-
ally experiencing (Hochachka & Somero, 1973, 1984, 2002; Emeretly, 1990; Ugolev & 
Kuzmina, 1993; Shulman & Love, 1999). Thus the activity of fish tissue enzymes must not 
be defined at a predetermined temperature of 25°C (the favorite temperature of classical 
biochemists studying poikilotherms), but at the temperature of the habitat at the real moment 
of time (Fig. 5.17).

The influence of temperature on fish occurs via a direct pathway that involves sensory 
perception of temperature and which ultimately leads to the release of the thyroid hormones 
thyroxine and triiodothyronine and these increase oxygen consumption (Ruland, 1969; 
Leatherland, 1994). Therefore global warming, which began at the end of the last century, 
has had an impact on the fat reserves of pelagic fish in the Black Sea: in warm-water anchovy 
the fat reserves increased, while those in cold-water sprat decreased (Shulman et al., 2009b; 
Nikolsky et al., 2011). With increasing water temperature, many species (including ther-
mophilous fish) undergo a change in the character of energy catabolism, for example 
common carp and silver carp Hypophthalmichthys molitrix shift metabolism, to a consider-
able degree, from aerobic (lipids) to anaerobic (carbohydrate) pathways of energy utiliza-
tion (Eckberg, 1962; Freed, 1965; Ramaswami & Sushella, 1974; Wells, 1978; Arsan, 1986; 
Bilyk, 1989; Romanenko et al, 1991). It is also known that glycolysis is less dependent on 
temperature than aerobic metabolism. In such a situation, the content of glucose and other 
products of glycolysis (oxaloacetate, pyruvate, lactate) increase (Prosser, 1967; Hochachka & 
Somero, 1973). The pentose phosphate shunt also increases (Hochachka & Hayes, 1962; 
Yamaguchi et al., 1976; Malinovskaya, 1988; Kudryavtseva, 1990). Mullet Liza sp. adapted 
to low temperature increases its content of neutral lipids in muscles by inhibition of aerobic 
catabolism (Soldatov, 1993). Protein synthesis (Ray & Medda, 1975; Berezhnaya et al., 
1981; Saez et al., 1982) and somatic growth rate (Ryzhkov, 1976) also proceed more inten-
sively at high temperatures. Relationships between protein, lipid and carbohydrate catabo-
lism and anabolism change as temperature changes (Romanenko et al., 1991). During 
temperature adaptation, hormones such as somatotropin, cortisol and prolactin play an 
active role in regulating energy metabolism (resynthesis of ATP and macroenergy utilization) 
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(Sautin, 1985; Trenkler & Samenkova, 1990; King et al., 2006). At very high temperatures 
(39°C or more) the level of metabolism in many species decreases and respiration and phos-
phorylation become disconnected (Johnston et al., 1983; Romanenko et al., 1991). As a 
result, heat dissipation in fish increases (Fomovsky, 1981). Conversely, Antarctic fishes 
(e.g., Notothenidae) live at temperatures of about –1.8°C in water with a very high oxygen 
concentration. Large quantities of food and high oxygen concentrations stimulate aerobic 
metabolism and inhibit enzymes of carbohydrate catabolism (Hemmingsen & Douglas, 
1970; Johnston, 1985). The same occurs with the ice fish Chaenocephalus aceratus, which 
has no hemoglobin but exhibits high concentrations of oxygen in blood plasma.

Over many decades the following question has arisen: Is there any compensation of the 
rate of aerobic catabolism in fish (determined by oxygen consumption) at low temperatures? 
The answer is that it occurs at a biochemical (sub-organism) level, and this confirms numerous 
results already discussed. However, the suggestion of such compensation at a physiological 
(organism) level has been widely criticized by other researchers (Holeton, 1974; Ivleva, 
1983; Karamushko, 2007). We consider that there are no serious reasons for disagreement 
around this question. It is worth remembering that integration of metabolic processes occurs 
at individual and population levels, and also at lower levels (tissue, cellular, subcellular) and 
that, as a rule, this integration leads to a decrease in their intensity. Primarily this relates to 
oxygen consumption. Taking this into account, the metabolic level of natural populations 
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Figure 5.17  Lactate dehydrogenase (LDH) activity of fish at natural temperature of habitation:  
(a) cold-tolerant whiting Odontogadus merlangus euxinus; (b) warm-tolerant horse-mackerel Trachurus 
mediterraneus ponticus. 1 – white muscles, 2 – red muscles, 3 – liver. After Emeretly (1990a,b) and 
Shulman & Love (1999).
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should be based on active metabolism (Ivlev, 1959; Belokopytin, 1993; Shulman & Love, 
1999; Karamushko, 2007), whose definition, as shown in Chapter 2, is extremely compli-
cated. Therefore, from our point of view, there is no reason for the disagreement. These 
indicators of fish adaptations to temperature may be used to characterize populations and 
individuals and at subcellular levels. It is only necessary to consider exactly what structural–
functional levels these characteristics indicate.

Accepting the close relation between temperature and level of metabolic activity in fish, 
temperature also affects the composition and conformation of macromolecules, triggering 
the expression of specific isoenzymes involved in muscle contraction (Johnston, 1993) and 
changing the protein ultrastructure of muscles (Crockford & Johnston, 1993). The tempera-
ture of the fish habitat induces thermoresistance of enzymes (succinate dehydrogenase, 
aldolase, adenylate cyclase, alkaline phosphatase, acetylcholinesterase, and proteinase) and 
structural proteins (actomyosin, collagen, hemoglobin, serum albumin, and globulin) 
(Ushakov, 1963; Tsukuda & Ohsawa, 1971; Alexandrov, 1975; Johnston et al., 1975). 
Differences in thermoresistance related to temperature of the environment has been shown 
for ATPase of myofibrils in 19 species of fish mainly from the North Sea and the 
Mediterranean (Johnston et al., 1973). Differences have been observed between collagens of 
subcutaneous tissues in warm-tolerant and cold-tolerant species (Gustavson, 1953; Takahashi & 
Yokoyama, 1954; Gowri & Joseph, 1968). Similarly, in cod Gadus morhua and whiting 
Merlangius merlangus the stability of collagen of subcutaneous tissue depends on the tem-
perature of the habitats occupied by populations in the different regions (Andreeva, 1971).

The temperature of the environment that fish occupy is responsible for the degree of 
unsaturated lipids in their bodies (Kizevetter, 1942; Shkorbatov, 1961; Ackman, 1967; 
Hilditch & Williams, 1964; Lunde, 1973). With decrease in temperature the level of unsatu-
ration rises, and this prevents transformation of lipid from a liquid to a liquid-crystal state. 
The degree of lipid unsaturation depends on the climatic–geographic zone of habitation, 
seasonal temperature changes, and adaptations to different temperature regimes in experi-
mental conditions (Hoar & Cottle, 1952; Lewis, 1962; Farkas & Herodek, 1964; Privolnev & 
Brizinova, 1964). The degree of unsaturation is regulated by the content of polyenic fatty 
acids, which are consumed as part of the diet (Bell et al., 1986; Sargent & Henderson, 1980). 
An inverse relationship between the temperature of the environment that fish occupy and the 
percentage content of unsaturated fatty acids in their bodies has been shown by Johnston 
and Roots (1964), Ugolev and Kuzmina (1993), and many others. This desaturation process 
is mediated by Δ5-, Δ6- and Δ9-desaturases in freshwater fish (Christiansen, 1984; Hagar & 
Hazel, 1985). In marine fish, because of the inactivity of the necessary enzymes, desatura-
tion is achieved by consumption of exogenous sources of unsaturated lipids as food (Sargent, 
1987). Seasonal changes of polyenic acid content are inversely related to temperature of the 
environment. This has been shown in horse-mackerel Trachurus trachurus from the eastern 
and northern Atlantic (Dobrusin, 1978), little tunny Euthynnus alletteratus (El Saed, 
1984), mackerel Scomber scombrus and anchovy Engraulis encrasicolus from the Atlantic 
sector of Argentina (Pozo et al., 1992), sprat Sprattus sprattus from the Adriatic (Viviani 
et al., 1973), Atlantic herring Clupea harengus (Henderson & Almater, 1989), cod Gadus 
morhua from the northern Atlantic (Jangaard et al., 1967), sardine Sardina pilchardus 
(Zlatanos & Laskaridis, 2007) from the Mediterranean, skates Rhinobatos cemiculus and 
Rhinoptera marginata from the tropical Atlantic (El Kebir et al., 2003), blenny Enedrias 
nebulosus (Pekkarinen, 1980), and grey mullet Mugil cephalus (Deng et al., 1976). These 
changes are well shown by capelin Mallotus villosus (Henderson et al., 1984; Table 5.1). 
Kreps et al. (1977) and Kreps (1981) demonstrated higher levels of C20 and C22 fatty acids 
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in phospholipids of brain tissue in deep-sea tropical fish compared with fish that inhabit 
surface layers at higher temperatures. Excluding polyenic acids, fish which live at low tem-
peratures have increased content of phospholipid fractions (phosphatidylethanolamine, 
phosphatidylcholine, etc.) in triglycerides (Hazel & Schuster, 1976; Shatunovsly, 1980; 
Lapin & Shatunovsky, 1981; Van den Thillart & Bruin, 1981; Sidorov, 1983; Hazel & 
Landrey, 1988; Hazel & Williams, 1990). Cholesterol, another structural lipid that provides 
“durability” of membranes, also plays an active role in temperature adaptations (Kreps, 
1981; Chebotareva, 1983; Shatunovsky, 1980; Sautin, 1989). An important role in adaptation 
to over-low temperatures belongs to glycoproteins, which protect blood from freezing 
(De Vries, 1970, 1971; Bielar et al., 1982; Hochachka & Somero, 1973).

The effect of temperature on condition of fish has been extensively investigated, both in 
the field and in the laboratory. In gadoid species (usually considered cold-water species), 
good condition has usually been associated with warm waters. For example, in Greenlandic 
waters Lloret and Rätz (2000) showed that annual mean condition factor values of cod were 
positively correlated with annual weighted mean temperatures (Fig.  5.18). In the North 
Atlantic, Rätz and Lloret (2003) reported a positive relationship between the condition 
factor of 10 cod stocks and the near-bottom temperature of their habitats. The authors 
concluded that cod stocks living in temperate waters on average are in better condition than 
stocks living in cold waters. For juvenile and adult Atlantic cod (Gadus morhua) inhabiting 
the southern Grand Bank of Newfoundland (Canada), Morgan et al. (2010) found that 
gutted body condition was highest at warm temperatures, although liver condition was 
highest at low temperatures. In addition, adult pouting (Trisopterus luscus) were found to 
be in better condition in the warmer waters of southern Portugal than in the colder waters of 
the north (Tanner et al., 2009). Total protein content increased from north to south along the 
coast, according to an increase in sea surface temperature (SST) in the same direction. 
According to the authors, the higher temperature towards the optimal might enable higher 
protein turnover and allow individuals from warmer waters to produce and accumulate 
more energy reserves in the form of proteins in white muscle, enhancing growth in mass. In 
the southern California region, the condition factors of mackerel (Scomber japonicus) and 
jack mackerel (Trachurus symmetricus) were correlated with water temperature (Parrish & 
Mallicoate, 1995).
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Figure 5.18  Interannual variations in temperature and condition factor (calculated with total weights) 
of cod Gadus morhua captured during autumn (September–November) groundfish surveys between 
1982 and 1998 off Greenland. Data for 1983–1986 and 1988 on condition factor were not available. 
From Lloret & Rätz (2000).
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In other cases, a negative relationship between water temperature and fish condition has 
been found. For example, in several Portuguese estuaries a negative relationship has been 
observed between the condition of sole and temperature (Vasconcelos et al., 2009), which 
may be explained by increased physiological stress of sole in warm waters (Lefrançois & 
Claireaux, 2003). Furthermore, Rosa et al. (2010) found a negative effect of temperature on 
condition of sardine on the Atlantic coast of the Iberian Peninsula. When comparing the 
entire time series of adult sardine energy density (whole body) with SST and offshore Ekman 
transport, the authors found significant lagged associations with SST and Ekman transport 
(lags of 2 and 3 months). Lagged SST was negatively associated with sardine energy, and 
lagged Ekman transport was positively associated with sardine condition (Fig. 5.19). In this 
case, water temperature and Ekman transport probably affected sardine condition through 
changes in prey availability. Hence, the combination of environmental conditions that trig-
gered positive anomalies in sardine energy density – colder ocean temperatures associated 
with positive Ekman transport values – corresponded to upwelling conditions favorable for 
the spring/early summer phytoplankton and zooplankton blooms. According to Rosa et al. 
(2010), these environmental conditions are critical for adult fish feeding in order to maximize 
their late summer energy peak before starting into the prolonged winter spawning season.

Not only is adult and juvenile condition affected by sea temperature but also by larval 
condition. The RNA/DNA ratio of anchovy larvae from the Catalan Sea (west Mediterranean) 
correlated negatively with sea temperature, while in the Gulf of Lions there was a positive 
correlation with temperature (García et al., 1998). Environmental factors are also behind the 
higher larval and juvenile growth rates and condition indicators (K, mean RNA/DNA ratios 

Figure 5.19  Sardina (Sardina pilchardus) off the Iberian Atlantic coast. Relationships between 
seasonally adjusted sardine energy (rED, kJ/g wet weight) and earlier oceanographic conditions, 
namely seasonally adjusted sea surface temperature (SST) and Ekman transport (Qx) with a 3 month lag, 
during the entire studied period (left panels) or restricted to the end of the main feeding period (summer 
peak; right panels). From Rosa et al. (2010).
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and protein content) of fish inhabiting tropical and temperate seas that occur in complex or 
variable habitats (respectively coral reefs and estuaries; Fonseca & Cabral, 2007). It seems 
that these species invest highly in rapid growth in order to increase survival probability to 
counter high mortality rates during early stages or unstable habitat conditions.

Nevertheless, other studies (e.g., cod in Iceland, Pardoe et al., 2008) have suggested that 
temperature does not determine condition directly but instead acts as a proxy for other more 
important factors such as food supply. Furthermore, the effect of temperature on fish 
condition has been hypothesized as a limiting factor of the expansion of invasive species in 
certain areas. For example, low-temperature conditions in winter in the Mediterranean may 
limit the further expansion of barracuda Sphyraena chrysotaenia, a species of Indo-Pacific 
Ocean origin, from the southeastern Mediterranean towards the north and west (Kalogirou 
et al., 2012). During winter, the condition factor of the non-indigenous S. chrysotaenia was 
significantly lower than that of the indigenous S. sphyraena and S. viridiensis (Fig. 5.20). 
According to the authors, the non-indigenous S. chrysotaenia’s lower condition factor in 
winter indicates that temperature minima may be a limiting factor for growth through 
reduced feeding, as is generally accepted for many fish species (Fonds et al., 1992). 
Furthermore, as the two indigenous species were stable throughout the year, except for 
S.  sphyraena, which exhibited a slightly lower condition factor in summer, the authors 
suggested that the indigenous sphyraenid species were in good condition and that the condition 
had not been affected to any large extent by the establishment of a non-indigenous barracuda. 
On the contrary, the non-indigenous S. chrysotaenia in Egyptian waters of the Mediterranean 
had a higher Fulton’s condition factor than the indigenous species S. sphyraena, S. flavicauda, 
and S. viridensis (Allam et al., 2004a), and also reproduces at a smaller size than the indig-
enous species, indicating abilities which could favor its successful establishment (Allam 
et al., 2004b).

5.2.2	 Climate change

Global climate and ocean changes resulting from anthropogenic greenhouse-gas emissions 
are currently affecting and are expected to continue to affect marine organisms (reviewed by 
Cheung et al., 2009). These impacts are fundamentally linked to the close relationship 
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between ocean conditions and the ecophysiology of marine organisms. Climate variability 
affects the abundance and biogeography of fish (McFarlane et al., 2000; Reid et al., 2001; 
Genner et al., 2004) through species-specific physiological thresholds of temperature 
tolerance. Despite many studies focusing on the implication of thermal tolerance for the 
distribution range of fish, few studies have assessed the integrated responses of changes in 
ecophysiology. Thus, only a small number of studies have assessed the impact of climate 
change on fish condition, particularly regarding the impact of sea warming, which is a 
well-known feature observed in nearly all seas and oceans, from shallow to deep waters.

Although the link between water temperature and fish condition has been studied, other 
environmental variables that have also been linked to condition of fish include salinity, 
bottom characteristics, and winds. In the southern California region, the condition factors of 
mackerel (Scomber japonicus) and jack mackerel (Trachurus symmetricus) were correlated 
with proxy indicators of alongshore advection (sea level), offshore advection (Ekman trans-
port), and salinity (Parrish & Mallicoate, 1995). In the Bay of Biscay (northeast Atlantic), 
strong winds affect the larval condition of anchovy (Bergeron, 2000).

Climate variability can also influence the condition of fish by changing the duration of 
suitable feeding conditions. For example, by influencing the length of zooplankton 
reproduction and development seasons, climate variability can also influence the duration of 
suitable feeding conditions for capelin in the Barents Sea (Orlova et al., 2010). In this study, 
capelin biomass and the NAO climatic index explained more than 28% of the interannual 
variability in maximum fat content, suggesting that climatic conditions partly determine 
feeding conditions for capelin, and may influence population biomass accumulation and fat 
content simultaneously. The authors hypothesized that climate change may result in 
increased primary productivity and significantly alter the Barents Sea zooplankton community 
by reducing Calanus glacialis abundance by 50%, while only modestly increasing the 
C. finmarchicus population (Ellingsen et al., 2008). This scenario could have strong negative 
implications for capelin feeding and condition because capelin appears to select for 
C. glacialis (contains more lipid than the Atlantic-boreal C. finmarchicus) and for larger (and 
more fat-rich) life stages. Thus, climate can affect both biomass and condition of a given 
species, as well as the biomass of its main prey, but in a complex manner. On the other hand, 
Engelhard and Heino (2006) indicated that a year of poor environmental conditions, by 
affecting growth and condition of herring Clupea harengus, could have a threefold negative 
effect on reproductive potential by (i) increasing mortality, (ii) reducing mean fecundity per 
individual spawner, and (iii) increasing the fraction of adults skipping reproduction.

In addition, climate shifts could also change EFA production (a key component of fish diet 
that affects condition) either by changing phytoplankton species composition or by changing 
EFA production within phytoplankton taxa. One of the best-studied examples of changing 
EFA production in response to environmental change comes from the Baltic Sea, where 
eutrophication has shifted phytoplankton dominance from diatoms to flagellates, apparently 
resulting in changes in EFA ratios throughout the food web, and possibly leading to a chronic 
reproductive disease in salmon Salmo salar (Ahlgren et al., 2005). Also, Litzow et al. (2006) 
provided strong indications that changes in lipid content of different fish communities were 
the result of climate-mediated changes in the availability of essential fatty acids. The authors 
found that following the 1970s Pacific Decadal Oscillation regime shift, walleye pollock 
Theragra chalcogramma and other demersal lipid-poor species (mostly demersal) increased 
in abundance in four boreal zones (Bering Sea, Gulf of Alaska, North Sea and Scotian shelf), 
while small pelagic lipid-rich species such as capelin Mallotus villosus declined (Fig. 5.21). 
Therefore, the four examples of community reorganization that Litzwow et al. (2006) utilized 
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Figure 5.21  Opposite population trajectories in lipid-rich and lipid-poor species following climate 
regime shifts: analysis of previously published data on fish population trajectories and lipid content. 
In each instance lipid content was significantly different between groups that increased and decreased  
in abundance. Asterisks indicate lipid data estimated from family mean; error bars + se. From Litzow  
et al. (2006).
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in their study all involved shifts between pelagic and demersal communities, and they hypoth-
esize that these changes in fish community lipid content were the result of climate-mediated 
changes in the availability of EFAs. Shifts between pelagic and demersal species have impli-
cations for community lipid content and lipid availability for higher predators, as pelagic fish 
are typically richer in lipids than demersal species (Anthony et al., 2000; Iverson et al., 2002). 
This situation is also recognized in the Gulf of Alaska, where a climate regime shift in the 
1970s resulted in population decreases in lipid-rich pelagic species (capelin Mallotus villosus 
and Pacific herring Clupea pallasii) and steady population increases in lipid-poor gadoids 
and pleuronectids (Anderson & Piatt, 1999; Mueter & Norcross, 2000). The resulting low-
lipid state has persisted for approximately 20 years and is hypothesized to have had negative 
effects on piscivores in the region (Anderson & Piatt, 1999).

There are also some recent indications showing detrimental effects of ocean warming on 
condition of some species. For example, condition of Atlantic salmon Salmo salar has fallen 
as sea surface temperature (SST) anomaly has risen, and for each year-class the midwinter 
(January) SST anomalies they experienced at sea correlated negatively with their final 
condition on migratory return during the subsequent summer months (Todd et al., 2008). 
According to the authors, the probability of the poorest condition salmon successfully 
migrating upriver and surviving to spawn in November is likely to be extremely low. While 
a direct physiological effect of ocean warming on fish like salmon is possible, other evidence 
suggests it is more likely that the negative correlations between condition and sea tempera-
ture are manifest in bottom-up control (i.e., reduced prey availability) (Todd et al., 2008).

In freshwater ecosystems there is also good evidence that climate change can affect body 
condition of fish. In Ontario, for example, changes in body condition of two species of core-
gonid fish (lake herring Coregonus artedi and lake whitefish C. clupeaformis) were related 
to regional differences in the degree of climate change during the time period investigated 
(Rennie et al., 2010). Climate data from northwestern, northeastern, and southern Ontario 
showed a general warming trend in all regions over the period of study. However, greater 
temporal changes in climate were observed in the northwest where warming was more 
intense and precipitation declined over the study period compared with relatively little 
change in southern or northeastern Ontario (Rennie et al., 2010). Correspondingly, north-
western Ontario coregonid populations demonstrated significantly greater declines in body 
condition relative to those from northeastern or southern Ontario. Because fish condition 
affects both reproductive success and overwinter survival, the authors suggested that 
observed condition declines of the magnitude reported here could have profound implica-
tions for the structure of freshwater aquatic ecosystems in a warming climate.

Also the condition of larvae is affected by environmental variables. For example, low 
nutritional condition of anchovy (E. encrasicolus) larvae in the Bay of Biscay (northeast 
Atlantic) was linked to strong winds with speeds of 20–30 knots, and supported the notion 
that some environmental stability is required for good feeding conditions (Bergeron, 2000).

A recent study has shown that both theory and empirical observations support the hypo-
thesis that sea warming and reduced oxygen will reduce body size of marine fish (Cheung 
et al., 2013). Specifically, the maximum body weight of marine fish and invertebrates is 
fundamentally limited by the balance between energy demand and supply. Results suggest 
that oxygen-limited growth in aquatic water-breathing animals and species’ range shift will 
translate, given their physiological responses to warming and changes in oxygen level, into 
a reduction in individual- and assemblage-level body size (Cheung et al., 2012). Further 
examples on how climate change and sea warming affect the condition of fish through 
changes in the fodder base are given in section 6.3. The relationship between temperature 
and fodder base for many fish is illustrated in general by the scheme shown in Fig. 6.23.
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5.2.3	 Oxygen deficiency

We previously noted the significant role of oxygen for fish life (see Fig. 2.1). Naturally high 
water oxygen saturation guarantees normal population existence. In the oceans and in many 
seas, the oxygen concentration is 7–8 mg/L, which is optimal for the majority fish species 
(i.e., this is the “normal” environment). However, we cannot ignore the fact that a number 
of fish species may (and some do) live in lower oxygen concentrations (0.1 mg/L and even 
lower). These are the so-called “extremophiles.” There is nothing surprising in this. Many 
freshwater species of the Cyprinidae family (especially those in closed, weakly flowing or 
inflowing basins) suffer a decline in oxygen concentration to very low values and survive 
strong hypoxic conditions. What is more, marine species inhabiting coastal areas such as the 
northwestern Black Sea (Zaitsev, 1992) and the Sea of Azov (Kostyuchenko, 1961), where 
the depth does not exceed 16 m, as well as in the gulfs of Venice and Trieste in the Adriatic 
(Orel et al., 1986), are permanently exposed to hypoxic stress. This stress is caused by 
strong eutrophication, which leads to higher concentrations of phytoplankton and even 
plankton blooms (including red tides). Although phytoplankton liberate oxygen into the 
water, the oxygen required for oxidation of dead plants exceeds the amount liberated by the 
plankton. Other factors that contribute to eutrophication are high water temperatures during 
the summer (which thoroughly warms all water layers to the bottom) and pollution, which 
has increased strongly during the last decades due to the input of organic toxicants and 
heavy metals of terrestrial origin (via river discharges). In summer months, especially during 
long periods of calm weather, oxygen is depleted and this causes the death of immense 
numbers of fish by asphyxia. Nevertheless, some fish are adapted to these difficult environ-
mental conditions, including numerous species of the Gobiidae family. Some of them, to 
avoid these difficult conditions, penetrate into fresh waters where they swim against the 
current, while others move to further sea basins. Recently, the round goby Neogobius 
melanostomus spread from the Sea of Azov and the Black Sea towards the Baltic Sea and 
has been introduced as an invasive species in the Great Lakes of North America. It is known 
that in oceans and open seas there are numerous regions where low oxygen concentrations 
prevail (0.1 mg/L) (Fig. 5.22).

The reduction in oxygen concentration extends to considerable depths (between 200 and 
1000 m; Fig. 5.23) and is caused by the massive development and death of phytoplankton 
(after death the organic substances are oxidized and sink to deeper waters as “detritus,” but the 
products of excretion of living phytoplankton such as soluble organic substances are also 
responsible). This paradox is seen in the Arabian Sea (Kukharev et al., 1988) and in the Pacific 
coastal zone of North America (Vinogradov et al., 1992): in areas of low oxygen concentration 
not only is there higher abundance of zooplankton and squids, but also schools of large fish of 
the families Myctophidae and Gonostomatidae, and also Scombriidae and Carangidae. Fish 
are also found in the hydrothermal regions on the borders of zones with very low oxygen con-
centrations (Gal’chenko et al., 1988; Tunnicliffe, 1991; Gebruk et al., 1997). These examples 
force us to think about the metabolic mechanisms leading to fish adaptation to “extreme” 
environmental conditions, from the point of view of “standard” considerations. Here, protein 
substrates and products of protein and nitrogenous catabolism play an important role in marine 
fish adaptation to hypoxia. Experiments have been conducted on several species of Black 
Sea fish in which it was shown that short-term hypoxic stress (reduction  in  oxygen 
concentration from 8.6 to 1.7 mg/L over 1–3 hours) of scorpionfish Scorpaena porcus, 
annular bream Diplodus annularis, and horse-mackerel Trachurus mediterraneus ponticus 
caused a marked fall in oxygen consumption and significant rise in ammonia nitrogen excretion 
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Figure 5.22  Distribution of hypoxic zones in the world’s oceans. After Kamykowski & Zentara (1990).
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Figure 5.23  Dependence of oxygen deficiency on ocean depth. After Raymont (1963).
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(Fig. 5.24). It is known that ammonia nitrogen comprises 80–90% of total nitrogen excreted 
by fish (ultimately in the form of urea) (Stroganov, 1962; Mann, 1965; Waarde, 1983). 
Concurrently, the ratio of ammonia excreted to oxygen consumed (ammonia quotient or 
AQ) increases as does the ratio of oxygen consumed to nitrogen excreted (O/N) (Stroganov, 
1956; Prosser & Brown, 1962; Mathur, 1967; Kutty, 1968, 1972). Energy consumption at 
AQ >30 is mainly the result of lipid and carbohydrate metabolism; at AQ = 20–30, protein 
and non-protein substrates are used in metabolism; and at AQ <20, energy catabolism 
switches to proteins and products of their metabolism. At AQ = 8.67, all the oxygen is 
utilized by the protein–nitrogen complex; at AQ <8.67, a fraction of proteins and nitrogen 
products are catabolized in anaerobic processes. Under controlled experiments, when AQ 
fell to very low values (Stolbov et al., 1995; Fig. 5.25), at 60% oxygen saturation of water, 
protein–nitrogen catabolism begins to dominate; at 20–40% oxygen saturation, some protein 
and nitrogen products are used in anaerobic pathways (Fig. 5.26). However, can the results 
of these experiments be translated to the natural environment? The experiments of Stolbov 
et al. (1997), carried out under long-term hypoxic conditions with scorpionfish maintained 
over 13 hours in water with an oxygen saturation of 12–16% (1.0–1.4 mg/L) (Fig. 5.27), 
confirmed the short-term consequences of hypoxia for this coastal species. Further, a 29-day 
experiment with scorpionfish in water at 30% oxygen saturation revealed an AQ of 15.8 
(Figs 5.28 and 5.29) (Shulman et al., 2003). In the same experiment, golden mullet Mugil 
auratus in water at 54% oxygen saturation exhibited an AQ of 4.9. Blood condition indicators 
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(hemoglobin concentration, erythrocyte number, and hematocrit) were normal. These results 
show that selected fish adapted rather well to hypoxic conditions, which often occur in the 
Black Sea. Scorpionfish is a sedentary species whereas golden mullet exhibits moderate 
locomotory activity. We do not know how highly mobile species such as pelagics behave 
under long-term oxygen deficiency. However, Artemov (personal communication) observed 
that sprat schools in the Black Sea often penetrate to zones adjacent to areas containing 
hydrogen sulfide where oxygen deficiency is very marked (0.1–0.4 mg/L), and these schools 
rest here for long periods. This confirms data obtained earlier by Zuev and Melnikova 
(2000). By the way, all these examples from the marine environment agree with results from 
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studies on freshwater fish, where the respiratory quotient (RQ, ratio of excreted carbon 
dioxide to consumed oxygen) is 0.7–0.9 (Stroganov, 1956; Mathur, 1967; Kutty, 1968; 
Alikin, 1975; Kutty & Mohamed, 1975; Solomatina et al., 1989). Unfortunately the use of 
RQ in marine fish is impossible due to the carbonate buffer characteristics of sea water. 
Anaerobic utilization of protein is also observed in fish during so-called functional hypoxia, 
when long-term intensive swimming causes deficiency of oxygen used in oxidation of lipid 
and carbohydrate substrates (Lukyanenko, 1987), as well as during “overfeeding” when the 
quantity of protein consumed by the fish exceeds the ability of aerobic oxidation to metab-
olize it (Sukumaran & Kutty, 1977; Shulman & Love, 1999).
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Figure 5.28  Oxygen consumption (a), nitrogen excretion (b) and O/N ratio (c) in Scorpaena porcus 
during long-term hypoxia. After Shulman et al. (2003).

Figure 5.29  Scorpionfish Scorpaena porcus. Photo by Josep Lloret.
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The ability of fish to utilize proteins and products of the anaerobic catabolism of nitrogen 
is spread widely among marine animals belonging to numerous taxa (Shulman et al., 1993; 
Shulman & Love, 1999; Soldatov, 2011), for example annelids, crustaceans, mollusks, and 
echinoderms. During oxygen deficiency, utilization of protein occurs before non-protein 
substrates. Catabolism of lipids requires more oxygen, while glycogen content in fish and 
many marine invertebrates is too low to maintain anaerobic metabolism for long periods. 
Glycogen is used by fish as a short-term adaptation to oxygen deficiency (Brand, 1946) and 
for short-term energy-demanding “explosive” work. The significance of carbohydrates in 
adaptation to hypoxia has been observed by Hochachka and Somero (1973, 1984, 2002), 
Murat (1976), Mohamed and Kutty (1983a,b). Proteins, peptides and amino acids are used 
in anaerobic metabolism not only directly but also by gluconeogenesis (Hochachka & 
Mustafa, 1972; Hochachka et al., 1973; Driedzic & Hochachka, 1975; Savina & Plisetskaya, 
1976). Anaerobic utilization of proteins and carbohydrates in mitochondria of fish muscles 
has been studied by Owen and Hochachka (1974) and Savina (1992), who showed that 
eventually, under conditions of hypoxia, the pool of free amino acids becomes an important 
supply of energy. A number of enzyme and metabolic indicators characterize features of the 
transformation of nitrogenous products and carbohydrates during energy utilization, 
including lactate dehydrogenase, malate dehydrogenase, glucose phosphorylase, glycogen 
phosphorylase, aspartate aminotransferase, and alanine aminotransferase. All may be used 
for estimating fish condition during oxygen deficiency.

An outstanding example of protein utilization (during oxygen deficiency) is the dramatic 
degeneration of muscle tissues in Pacific salmon of the genus Oncorhynchus during anadro-
mous spawning migrations (Idler & Bitners, 1958; Mommsen et al., 1980; Ando, 1986). 
In  this situation migratory fish undoubtedly survive functional hypoxia caused by swim
ming against the river current and jumping rapids. Thus proteins, as well as being utilized 
for maturation, are exploited as an energy source via anaerobic catabolism. By the way, 
oxygen deficiency increases the level of catecholamines and these affect carbohydrate 
metabolism. Oxygen deficiency also influences fish lipids. Closely related species of the 
Gobiidae family from the Sea of Azov exhibit different degrees of lipid unsaturation 
(Table 5.2) that exactly corresponds with the variable oxygen regime in their biotope in 
summer months (Shulman, 1974; Shulman & Love, 1999). The lowest oxygen concentra-
tions are found in silts on muddy bottoms, are higher in sandy bottoms, with the highest 
values found on rocky bottoms of the coast. The lowest level of energy metabolism is found 
in Neogobius syrman which inhabits silts (Shulman et al., 1957; Skazkina, 1972); energy 
metabolism is 1.5–2.0 times higher in N. melanostomus which inhabits sand, and is also 
higher in N. batrachocephalus which inhabits rocky bottoms (Skazkina, 1972). The degree 
of lipid unsaturation changes in tandem with these changes in energy metabolism. Thus fish 

Table 5.2  Iodine value (a measure of lipid unsaturation) in 
the liver lipids of different species of goby from the Sea of Azov

Species Males Females

Neogobius syrman 81.7 80.7
Neogobius melanostomus 128.8 113.7
Neogobius fluviatilis 153.7 145.0
Neogobius rattan 160.0 —
Mesogobius batrachocephalus 160.0 169.0

Source: after Shulman & Love (1999).
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lipids depend not only on food and temperature, but also on oxygen supply. In particular, 
toxic compounds have a specific effect on muscle structure, blocking the transfer of oxygen 
to tissues. Oxygen deficiency promotes the mobilization of structural proteins in muscles, 
causing disintegration of the sarcoplasmic reticulum and myofibrils and degeneration of 
collagenous structures. This was shown first for the Volga-Caspian sturgeon Acipenser gul-
denstadti but occurs in many other species in fresh and marine waters worldwide (Evgenieva 
et al., 1989; Lukyanenko et al., 1991; Nemova, 1991).

We have previously observed the influence of oxygen deficiency on the biochemical 
features of fish. However, it is important to understand the influence of hypoxia on their 
physiological (functional) features. Such investigations have been mainly carried out on 
freshwater fish (Itazawa & Takeda, 1978; Klyashtorin, 1982). However, marine fish of the 
Sea of Azov and Black Sea basins have been studied by Soldatov and colleagues (Soldatov, 
1996, 1998, 2011; Soldatov et al., 2004, 2010). He revealed a decrease in Po

2
 in blood and 

muscle tissues of fish under experimental hypoxic conditions. In this situation the velocity 
of oxygen transport via hemoglobin in erythrocytes and oxygen diffusion to tissues falls. As 
a result Po

2
 in tissues also decreases. However, during long-term experimental hypoxia, the 

decrease in Po
2
 in blood and tissues is compensated by a rise in efficiency of oxygen diffu-

sion. Very large decreases in Po
2
 promote the transition to anaerobic metabolism. The strong 

warming of the Black Sea and the Sea of Azov has led to considerable expansion of the 
hypoxic zones and this has significant effects on the number and composition of fish species 
tolerant of low and high levels of oxygen.

We have not discussed in this book the effect of carbon dioxide on marine fish, even 
though this has significance for fish in freshwater basins and aquaculture (Romanenko et al., 
1980; Shulman & Love, 1999; Esmark & Belfyord, 2005). We also do not consider 
significant factors such as salinity and water pressure as these have been discussed in detail 
in the book by Shulman and Love (1999).

5.3	 Anthropogenic factors

5.3.1	 Pollution

Because coastal and estuarine areas are under threat of chronic and accidental release of a wide 
range of anthropogenic pollutants, coastal fish are often exposed to pollution. In particular, 
juveniles of numerous commercial marine flatfish species, which use coastal and estuarine 
habitats as nurseries, are likely to be exposed to a number of anthropogenic pollutants.

Although alterations in fish condition are sometimes indicative of toxicant effects (Mayer 
et al., 1992), the impact of pollution on condition can be very different depending on the 
species and the area. Several studies have related lower sublethal physiological condition, 
particularly in juveniles, with pollution. In particular, a number of studies have demonstrated 
that nurseries located in or near harbors or polluted estuaries do not provide high-quality 
habitats for juvenile fish, as reflected by their lower growth and condition. The general 
hypothesis behind this relationship is that metabolic costs may be increased during exposure 
to pollutants, thus decreasing production processes such as growth and lipid storage (Amara 
et al, 2007; Martínez-Gómez et al., 2012).

Gilliers et al. (2012) carried out mesocosm experiments to determine whether high 
exposure to petroleum hydrocarbons, similar to what happens after an oil spill on coastal 
areas, affected survival and biological (growth, body condition and lipid reserve) performance 
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of juvenile common sole, which live on nearshore and estuarine nursery grounds. Results 
demonstrated that this type of exposure significantly reduces not only body condition and 
energy storage but also survival and growth of the juvenile fish, especially over the medium 
term (3 months after the exposure). The most dramatic difference was observed for lipid 
content, exposed fish presenting highly depleted lipid reserves, with triacylglycerol to free 
sterol ratios close to zero. These medium-term consequences affect future recruitment of 
this long-lived species. Furthermore, Azmat et al. (2007) showed a statistically significant 
relation between fluoride concentration and condition of the coastal fish Johnius belangerii 
in the Arabian Sea. Further, in laboratory experiments, physiological deterioration was 
apparent in fish exposed simultaneously to an oil refinery effluent and nitrite, with unremit-
tingly decreasing liver somatic index even after the withdrawal of the contaminants (Shailaja 
et al., 2006). Similarly, Amara et al. (2009) found that condition (RNA/DNA ratio and 
morphometric Fulton’s K) and growth of 0-group European flounder Platichthys flesus was 
lower in the Seine estuary, heavily impacted by artificial modifications and one of the most 
contaminated in Europe, than in two adjacent cleaner estuaries (low domestic, agricultural 
and industrial effluents). The authors concluded that metal contaminants were the most 
likely cause of condition differences among estuaries.

Morphometric (Fulton’s K condition index) and lipid (triacylglycerols/sterols ratio) 
condition indicators measured on 0-group juveniles of common sole along the French coast 
of the Southern Bight of the North Sea and the eastern English Channel correlated well with 
anthropogenic disturbance (Amara et al., 2007). Sites with highest levels of chemical con-
taminants in sediment had the lowest habitat quality and, through growth and lipid-storage 
limitation, could dramatically lower overwinter survival of the juveniles living in these 
nursery grounds. Furthermore, 0-group sole grew slowest in nursery sites characterized by 
intense industrial activity and urbanization.

Similarly, Martínez-Gómez et al. (2012) found that red mullet Mullus barbatus from a 
highly metal-polluted coastal area in the southwestern Mediterranean Sea (the Portmán 
area) had significantly lower condition factor, muscle lipid content, and gonadosomatic 
index, as well as the lowest levels of DNA integrity and the highest ethoxyresorufin-
O-deethylase (EROD) activity in liver, compared with less-polluted areas nearby (Santa 
Pola, Ebre Delta and Valencia; Table 5.3). Further, in the polluted area red mullets accu-
mulated the highest concentrations of mercury, lead and arsenic and also of some 
polycyclic aromatic hydrocarbons and polychlorinated biphenyls congeners (Table 5.3). 
According to the authors, the low nutritional and reproductive status in fish from the 
highly polluted site could be partially explained not only by variation in quality and lower 
prey abundance due to the effect of contaminants, but also by cumulative environmental 
and chemical stressors that impose a higher energy demand on the fish deriving from their 
natural detoxification processes.

In freshwater ecosystems, condition indicators have been frequently used for assessing 
the effects of pollutant stress on fish. The use of bioindicators such as condition indicators 
and indicators related to lipid biochemistry and histopathology have been shown to reflect 
impaired lipid metabolism, immune and reproductive system dysfunction, and reduced 
growth potential of fish (Adams et al., 1989). A number of investigations report lower 
Fulton’s condition factor and other metrics of morphometric condition in yellow perch 
(Perca flavescens) from metal-contaminated North American lakes relative to fish from 
reference lakes (Eastwood & Couture, 2002; Rajotte & Couture, 2002). Similarly, significant 
correlations between metal concentrations (Cd, Hg, and Pb) in organs and the condition 
factor of bream Abramis brama of the Lake of Balaton (Hungary) were found, especially for 
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the gill and liver (Farkas et al., 2001). Further, the changes in condition of roach Rutilus 
rutilus and bleak Alburnus alburnus clearly coincided with the variation in water quality in 
a eutrophic reservoir in the Iberian Peninsula (Benejam et al., 2008). Also Norris et al. 
(2000) found significant site differences in hepatosomatic index of brown trout Salmo trutta 
exposed to heavy metals (mainly Cd and Zn), with hepatosomatic index greater in fish living 
at the uncontaminated site. In fact, a wide range of physiological effects has been associated 
with poor water quality, including circulatory changes, altered heart rate, reduced blood 
oxygen saturation, change in respiratory quotient, and change in spleen, liver and kidney 
weights (Seager et al., 2000). In addition, Burke et al. (1993) found declining growth and 
condition in Atlantic croaker Micropogonias undulates between different estuarine stations 
along a pollution gradient.

In particular, biochemical parameters such as lipid, glucose, glycogen, and lactate are 
very sensitive to sublethal concentrations of stress agents such as pesticides. For example, 
liver glycogen and lipid content in European eel Anguilla angilla have been shown to 
decrease significantly after exposure to fenitrothion, a pesticide widely used in agriculture 
for crop protection (Sancho et al., 1998). Further, liver and blood lactate values increased 
during pesticide exposure, while proteins were decreased in comparison to unexposed con-
trols. The observed effects of the pesticide on eel biochemical parameters were attributed to 
a stress syndrome (Sancho et al., 1998).

Notwithstanding these results, other studies have suggested that condition factor values of 
fish exposed to pollutants are not significantly different from those of controls (e.g., Van der 
Oost et al., 1998; Gadagbui & Goksøyr, 1996), while others have pointed out that an increase 
in condition factor is sometimes indicative of toxicant effects. For example, condition factor 
and hepatosomatic index of mullet Liza saliens from a polluted lagoon on the Portuguese 
coast were higher compared with mullet from sea (Fernandes et al., 2008). Similarly, the 
hepatosomatic index of sculpin Myoxocephalus scorpius caught in polluted areas of the 
North Atlantic was higher than that of individuals caught in unpolluted areas (Stephensen 
et al., 2000). Results from studies with fish exposed to different pollutants, such as poly-
chlorinated biphenyls, organochlorine pesticides and polychlorinated dibenzodioxins, also 
showed an increase in hepatosomatic index (e.g., Arnold et al., 1995; Gadagbui & Goksøyr, 
1996). In these cases, the authors consider that the higher condition of individuals found in 
polluted areas can be indicative of increased activity of detoxifying enzymes

Furthermore, Gilliers et al. (2006) found that the growth and condition indicators of 
juvenile sole Solea solea from nursery grounds exposed to a major oil spill that occurred in 
December 1999 along the Atlantic French coast were relatively high. These results led the 
authors to suggest that there was no obvious impact of this event on the health of juvenile 
sole and on the quality of the exposed nursery grounds a few months after the event.

5.3.2	 Fishing

Fishing may provoke a decrease in the condition of certain marine species via the removal 
of available prey items for these species, the induction of stress, or the removal of individ-
uals in the population. In particular, bottom trawling negatively affects biomass and 
production of benthic communities (Jennings et al., 2001) that are the main food source for 
a number of demersal species (Hoines & Bergstad, 1999). As a result, bottom trawling has 
the potential to have the biggest effect on the condition of demersal species, as some studies 
support. In northwestern Mediterranean waters, Lloret et al. (2007) analyzed the lipid 
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content of pre-spawners of red mullet Mullus barbatus in three different areas in relation to 
trawling activities, and showed that fish with the highest muscle lipid levels inhabited the 
area where fishing impact (in terms of number of trawlers, fishing days, total capacity, and 
total machine power) was lowest, namely the Valencia area (Fig. 5.30). Furthermore, the 
abundance and biomass of polychaetes, which represent the main food source for the red 
mullet, was lower in trawled zones than in unfished ones (Fig.  5.31). Thus the authors 
suggested that red mullet were fatter in the Valencia area because the lower fishing impact 
there allows greater abundance and biomass of polychaetes, which allows a higher lipid 
content in red mullet.

12

10
(33) (38)

(33)

% lipid LMSI

(38)

Blanes Ebre Valencia

(27)

(27)

8

6

4

2

0

Figure 5.30  Differences in muscle lipid content (% dry weight, mean ± se) and lipid musculosomatic 
index (LMSI, mean ± se) of red mullet Mullus barbatus female pre-spawners between the study areas 
(Blanes, Ebre and Valencia). Number of samples are given in parentheses. From Lloret et al. (2007).

Figure 5.31  Differences in biomass (g/m2, mean ± se) of polychaetes between a fished and an 
unfished zone within the Ebre area in the seven benthic surveys: November 2002, June, July, August, 
September and November 2003, and June 2004. The asterisks denote that the difference is significant 
(P < 0.05).
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Similarly, in the North Sea, Hiddink et al. (2005) concluded that bottom trawling had the 
potential to negatively affect the condition and distribution of haddock. Furthermore, 
Chícharo et al. (2002) studied the chronic effects of dredging on condition of the clam 
Spisula solida in Portuguese waters. Laboratory simulations revealed that dredging-induced 
stress provoked a decrease in the RNA/DNA ratio and lipid composition of bivalves. 
Although responses were sublethal, decreases in condition suggested that bivalves are more 
susceptible to predation when they have been left in the seabed after the dredging activity, 
particularly during spawning (Chícharo et al., 2003). Furthermore, the noise from fishing 
operations (e.g., from towed nets or from motors) may induce stress on the fish and reduce 
its condition. For example, Anderson et al. (2011) examined stress responses to chronic 
noise exposure in the lined seahorse Hippocampus erectus and found that seahorses exposed 
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Figure 5.32  Adjusted mean total body mass (MT) and 95% CI by regions [northwestern Kiritimati 
(KirNW), southeastern Kiritimati (KirSE) and Palmyra (Pal)] for (a) Lutjanus bohar, (b) Paracirrhites 
arcatus, (c) Plectroglyphidodon dickii, (d ) Chromis margaritifer and (e) Acanthurus nigricans. The MT that 
were determined to be significantly different by t -test with Holm’s sequential Bonferroni correction are 
indicated by lower-case letters. From Walsh et al. (2012).
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to loud ambient noise in aquaria exhibited stress responses that reduced their Fulton’s 
condition factor and weight. In the laboratory experiment, seahorses in loud tanks declined 
in weight and condition factor. Therefore, long-term exposure to loud ambient noise can act 
as a chronic stressor to fish, resulting in responses among condition indicators (Anderson 
et al., 2011).

However, fishing may provoke density-dependent effects on condition. For example, 
M.  barbatus showed a higher condition factor in trawled areas/years in northern Sicily 
(Giacalone et al., 2010), a fact that the authors attributed to density-dependent effects linked 
to the increased biomass in untrawled areas.

Furthermore, a growing number of studies have also provided indications that fishing top 
predators may not only have direct effects on prey abundance (e.g., Terborgh & Estes, 2010) 
but also can affect condition of fish. For example, Walsh et al. (2012) showed that fishing 
top predators may indirectly increase prey-fish body condition and energy reserves by 
reducing predator abundance and associated predation rates and predation risk. Their study 
examined the indirect effect of fishing predators on prey energy allocation by comparing 
proxies of condition and reproductive potential in a diverse suite of species from reefs with 
different levels of fishing in the northern Line Islands (central Pacific Ocean). Results 
showed that three prey fish from multiple trophic levels (Paracirrhites arcatus, 
Plectroglyphidodon dickii and Acanthurus nigricans) at reefs with high fishing intensity 
(northwestern Kiritimati atoll) are not just heavier at a given length, but have heavier livers 
(for a certain total body mass) than those found at reefs with low (southeastern Kiritimati 
Atoll) or null (Palmira atoll) fishing intensity (Figs  5.32 and 5.33; Walsh et al., 2012). 
According to the authors, when predators are scarce, as they are in the highly fished north-
western Kiritimati atoll due to high fishing pressure, prey do not need to allocate as much 
energy to functions that increase survivorship and instead can direct this energy to growth, 
storage and reproduction. Thus, under low abundance of predators, prey can spend less time 
avoiding predators and can forage more often and over larger areas. Because time that prey 
spend avoiding predators is time that cannot be spent foraging, under low abundance pred-
ators prey may be able to consume more food or seek out higher-quality food. In addition, 
prey exposed to lower predation risk has lower mass-specific metabolic rates, meaning that 
less energy is required for maintenance (Walsh et al., 2012). Overall, it is clear that behavioral 
or physiological changes in prey under low predator conditions may result in higher net 
energy intake, which may translate into greater mass gain or storage of energy in fat reserves 
(Garvey et al., 2004; Pérez-Tris et al., 2004).

It is also important to note that in studies evaluating the condition and general health 
status of fish stocks, the method used for catching the fish is seldom considered a factor 
of importance (Fig. 5.34). However, there can be differences in condition indices of fish 
caught in different gear types. Ovegård et al. (2012) demonstrated that fishing method 
is related to fish condition; when condition indices were compared between cod caught 
in pots, gillnets, and on hooks in the same geographical area, the results showed that 
cod Gadus morhua caught on baited gear types (pots and hooks) generally displayed a 
lower condition and an older age compared with cod caught in gillnets. The results 
showed that there is indeed substance in the claims made by local fishers that, on a 
majority of the sampling occasions, fish caught in baited gear types such as hooks and 
pots exhibit significantly lower condition compared with fish caught in gillnets 
(Overgard et al., 2012). According to the authors, there are several possible explana-
tions for the lower condition of fish in the baited gear types, with the most obvious one 
being that fish in poor condition (i.e., in greater need of energy than fish in good 
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condition) are more likely to be actively searching for food and are therefore more 
prone to be attracted by the stimuli of the bait.

Finally, overfishing is threatening many fish stocks despite the importance of seafood for 
a healthy human diet. The depletion of these fish stocks, particularly pelagic oily fish popu-
lations, is reducing the potential supply of long-chain omega-3 fats. The current recommen-
dations of government health agencies to people in developed countries to increase their 
intakes of fatty fish by at least two to three times are incongruent with the collapse of global 
fish stocks (Jenkins et al., 2009). This raises the necessity to better manage fisheries in the 
Mediterranean in order to avoid overexploitation and allow stock recovery and, at the same 
time, to seek alternative sources of omega-3 fatty acids such as marine algae, microorgan-
isms, and plants (Surette, 2008).
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Figure 5.33  Adjusted mean liver mass (ML) and 95% CI by regions [northwestern Kiritimati (KirNW), 
southeastern Kiritimati (KirSE) and Palmyra (Pal)] for (a) Lutjanus bohar, (b) Paracirrhites arcatus, 
(c) Plectroglyphidodon dickii, (d) Chromis margaritifer and (e) Acanthurus nigricans. The ML that  
were determined to be significantly different by t-test with Holm’s sequential Bonferroni correction  
are indicated by lower-case letters. From Walsh et al. (2012).
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5.3.3	 Aquaculture

Because of the particular feeding of farmed fish (food pellets), the proximate composition 
of these fish, including total lipid content and fatty acid profile, is different from that of wild 
fish. Usually, the fat percentage is higher in reared than wild fish because the former always 
feed abundantly. Furthermore, Ackman and Takeuchi (1986) reported that the percentage of 
omega-3 PUFAs in farmed marine fish is usually lower than that in their wild relatives, 
presumably because of the lack of lipids originating from algae and marine phytoplankton 
(Jobling, 1985, 1993; Sargent, 1995). For example, fat percentage in the muscle of reared 
red porgy Pagrus pagrus (3.0%) is higher than that in wild fish (0.65%), whereas wild red 
porgy shows higher levels of omega-3 PUFAs than reared, reflecting dietary lipids (Rueda 
et al., 1997). Similarly, Skog et al. (2003) found that wild saithe associated with a single 
fjord-based farm in Norway had higher condition than control fish taken from within the 
same fjord.

Another example is found in salmon and some other aquaculture species, which were fed 
with Artemia salina nauplies containing high level of omega-3 fatty acids. In this way the 
level of omega-3 acids in these fries also became higher (Sargent et al., 1999).

Furthermore, there are recent indications that rearing of fish in coastal sea-cages using 
food pellets containing terrestrial plant products impacts wild fish that aggregate around 
farms by altering their natural diet in a way that leads to a change in body condition and fatty 
acid composition. The production of fish such as seabream Sparus aurata and seabass 
Dicentrarchus labrax in coastal fish farms is carried out using food pellets composed partly 
of vegetable oils. The corn or soya used in food production gives a high concentration of 
oleic acid, linoleic acid, and linolenic acid (Fernández-Jover et al., 2007). The introduction 

Figure 5.34  Longline coastal fishery in the Mediterranean. Photo by Josep Lloret.



Table 5.5  Fatty acid composition of Trachurus mediterraneus associated and not associated with fish farms

Name
Vilajoiosa  
Control

Alacant  
Control

Campello  
Farm

Guardamar  
Farm

C12:0 0.25 ± 0.51 0.16 ± 0.24 0.05 ± 0.08 0.14 ± 0.15
C13:0 1.02 ± 3.23 0.00 ± 0 0.00 ± 0 0.00 ± 0
C14:0 2.03 ± 0.42 2.53 ± 1.09 3.58 ± 0.55 3.32 ± 0.69
C14:1ω 5 0.00 ± 0 0.00 ± 0 0.00 ± 0 0.04 ± 0.12
C15:0 0.46 ± 0.35 0.57 ± 0.36 0.35 ± 0.19 0.49 ± 0.22
C15:1ω 5 0.00 ± 0 0.00 ± 0 0.00 ± 0 0.02 ± 0.06
C16:0 21.84 ± 1.94 23.39 ± 3.11 19.73 ± 1.79 18.81 ± 2.74
C16:1ω 7 1.97 ± 0.4 2.66 ± 1.28 4.49 ± 0.62 4.63 ± 1.83
C17:0 0.66 ± 0.24 0.55 ± 0.3 0.48 ± 0.21 0.67 ± 0.29
C17:1 0.24 ± 0.27 0.27 ± 0.22 0.21 ± 0.16 0.31 ± 0.28
C18:0 8.63 ± 2.67 7.85 ± 1.2 7.28 ± 2.88 7.66 ± 3.69
C18:1ω 9 9.30 ± 1.63 11.34 ± 2.45 18.81 ± 2.68 20.60 ± 9.09
C18:1ω 7 1.65 ± 0.2 1.73 ± 0.99 2.69 ± 0.23 2.70 ± 0.69
C18:2ω 6 2.69 ± 1.22 2.77 ± 2.88 14.26 ± 2.11 12.02 ± 5.59
C20:0 0.15 ± 0.2 0.20 ± 0.17 0.23 ± 0.18 0.29 ± 0.14
C18:3ω 6 0.59 ± 1.08 0.40 ± 0.62 0.66 ± 1.11 1.81 ± 3.22
C20:1ω 9 0.45 ± 0.33 0.98 ± 1.31 1.90 ± 0.82 1.93 ± 1.16
C18:3ω 3 0.24 ± 0.27 0.51 ± 0.71 1.60 ± 0.24 1.29 ± 0.61
C18:4ω 3 0.07 ± 0.12 0.19 ± 0.25 0.50 ± 0.31 0.57 ± 0.43
C20:2ω 6 0.21 ± 0.27 0.44 ± 0.33 0.56 ± 0.4 0.64 ± 0.26
C22:0 0.35 ± 0.31 0.33 ± 0.22 0.18 ± 0.17 0.19 ± 0.21
C20:3ω 6 0.18 ± 0.31 0.13 ± 0.31 0.23 ± 0.39 0.78 ± 1.32
C22:1ω 9 0.02 ± 0.06 0.12 ± 0.28 0.28 ± 0.25 0.20 ± 0.28
C20:3ω 3 0.00 ± 0 0.06 ± 0.17 0.05 ± 0.09 0.04 ± 0.09
C20:4ω 6 1.45 ± 0.25 1.42 ± 0.36 0.68 ± 0.41 0.68 ± 0.21
C23:0 0.00 ± 0 0.00 ± 0 0.00 ± 0 0.15 ± 0.48
C24:0 0.72 ± 0.3 0.46 ± 0.31 0.14 ± 0.17 0.18 ± 0.24
C20:5ω 3 5.83 ± 1.09 6.18 ± 1.61 6.04 ± 1.67 4.53 ± 1.74
C24:1ω 9 0.98 ± 0.37 0.90 ± 0.37 0.40 ± 0.23 0.51 ± 0.2
C22:4ω 6 0.05 ± 0.1 0.02 ± 0.07 0.05 ± 0.08 0.02 ± 0.05
C22:5ω 3 1.36 ± 0.53 1.29 ± 0.56 1.39 ± 0.24 1.11 ± 0.43
C22:6ω 3 36.61 ± 4.01 32.56 ± 6.55 13.19 ± 2.63 13.64 ± 3.72
ω 3 44.11 ± 5.2 40.79 ± 6.99 22.76 ± 4.31 21.19 ± 4.63
ω 6 5.17 ± 1.82 5.19 ± 2.82 16.43 ± 2.93 15.95 ± 5.27
ω 5 0.00 ± 0 0.00 ± 0 0.00 ± 0 0.06 ± 0.13
ω 7 3.62 ± 0.57 4.38 ± 2.11 7.18 ± 0.82 7.33 ± 2.47
ω 9 10.75 ± 1.51 13.34 ± 3.75 21.40 ± 3.15 23.25 ± 9.01
Saturated 36.10 ± 4.77 36.04 ± 3.16 32.02 ± 4.18 31.91 ± 6.81
Monounsaturated 14.62 ± 1.88 17.99 ± 5.45 28.79 ± 3.16 30.95 ± 10.86
Polyunsaturated 49.28 ± 5.22 45.98 ± 6.44 39.19 ± 4.17 37.14 ± 7.81

Fish were sampled from populations aggregated around two Mediterranean fish farms and from two 
natural control populations (n = 10, percent of total fatty acids).
Source: Fernández-Jover et al. (2007).

Table 5.4  Fulton’s condition index (CI) and liver somatic index (LSI) for wild Mediterranean  
horse-mackerel Trachurus mediterraneus

Location Length (mm) Weight (g) CI LSI

Vilajoiosa control 291.7 ± 27.9 222.9 ± 87.7 0.86 ± 0.06 1.32 ± 0.50
Alacant control 250.3 ± 15.2 134.4 ± 20.3 0.85 ± 0.04 1.60 ± 0.61
Campello Farm 378.7 ± 20.6 570.9 ± 107.5 1.04 ± 0.11 1.02 ± 0.34
Guardamar Farm 302.9 ± 30.9 275.71 ± 63.0 1.02 ± 0.24 1.11 ± 0.47

Fish were sampled from populations aggregated around two Mediterranean fish farms and from two 
natural control populations (n = 10). Values represent means ± standard deviation.
Source: Fernández-Jover et al. (2007).
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of this source of food to the marine environment could modify the fatty acid composition of 
wild fish that feed on lost pellets as well as their total fat content due to the high availability 
of food. This has been observed for wild Mediterranean horse-mackerel Trachurus mediter-
raneus sampled from populations aggregated around two Mediterranean fish farms and 
from two natural control populations (Fernández-Jover et al., 2007). Wild fish aggregated 
at farms mainly ate food pellets while control fish fed principally on juvenile fish and ceph-
alopods. Farm-associated fish had a higher Condition Index  than found in control fish 
(Table 5.4; Fernandez-Jover et al., 2007). In contrast, the Liver Somatic Index was higher in 
control fish  than in farm-associated fish (Table 5.4). Wild fish that fed around the cages had 
a significantly higher body fat content than the control fish (7.3% and 2.4%, respectively) 
and a different fatty acid composition (Table 5.5; Fernández-Jover et al., 2007). Despite 
these discrepancies, the authors hypothesized that the increased condition of wild fish 
associated with farms could increase the spawning ability of coastal fish populations, if wild 
fish are protected from fishing while they are present at farms, and that the fatty acid 
composition could also serve as biomarkers to infer the influence of a fish farm on the local 
fish community, helping to better describe the environmental impact of fish farming. 
According to Fernández-Jover (2007), such a method would be a key tool to infer the scale 
and magnitude of the influence of a net-cage fish farm on the local fauna, not only on fish 
that directly feed on lost food pellets but on the whole food web.
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6 � Fish condition as a measure  
of environmental status  
and habitat quality

Because fish condition, if appropriately interpreted, may characterize components of the 
environment in which fish exist (e.g., habitat, prey availability, competition), temporal and 
spatial changes in fish condition can reveal changes in environmental conditions and can 
therefore be used as indicators of environmental status. The use of condition indicators is 
fundamental for predicting species’ responses to acute environmental or human con-
straints, especially in a global climate change scenario. In particular, the health of small 
pelagic species can be a valuable indicator of anomalous environmental conditions (Lloret 
et al., 2012). Moreover, changes affecting marine food webs are ongoing and may accel-
erate in the future given threats such as climate change, the introduction of exotic species, 
and overexploitation. Long-term monitoring of stock health as well as the health of their 
prey can contribute to knowledge of how exploited fish stocks are responding to these 
changes. Fish health could be used as an additional ecosystem indicator for fisheries 

Summary: Temporal and spatial changes in fish condition can reveal changes in environmental 
conditions and can therefore be used as indicators of environmental status. In this chapter we 
provide evidence that the use of condition indicators is fundamental for predicting species’ 
responses to acute environmental or human constraints. This chapter shows how condition 
indicators can be used as indicators of the quality of habitats that fish inhabit, thus contributing 
to the identification of essential fish habitats, evaluation of the effect of habitat protection 
(marine reserves), or determination of the value of particular depths and areas for the produc-
tivity of fish stocks. In particular, the condition of small pelagic species can be a valuable 
indicator of anomalous environmental conditions. Furthermore, the consequences of anoma-
lous fish condition on top predators (e.g., seabirds and marine mammals) are also considered. 
Finally, the chapter supports with examples the integration of both genetic and ecophysiological 
approaches for interspecific and intraspecific differentiation.

Key words: habitat quality, spatial differences, bathymetric differences, marine protected 
areas, essential fish habitats, top predators, interspecific and intraspecific differentiation
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management other than those proposed recently by different authors (see for example Cury & 
Christiensen, 2005) and policy documents (e.g., Marine Strategy Framework Directive 
from the European Union). Fish health could serve as associated indicators that need to 
be  identified so as to guide progress towards achieving good environmental status in 
the marine environment. Because the physiological condition information could also aid 
in  understanding productivity and habitat relationships and steer management actions 
(e.g., establishment of marine reserves in those habitats where fish are better conditioned), 
fish condition could also be used as an indicator of habitat quality in the Mediterranean in 
order to determine and protect the habitats that are more valuable for fishery production, 
namely to identify essential fish habitats (EFHs), apart from the measurement of standard 
parameters such as abundance and biomass and the vulnerability of each habitat (Lloret 
et al., 2012).

6.1	 Fish condition as a measure of habitat quality

We have seen that spatial changes in environmental factors (abiotic or biotic) contribute to 
the observed variability in fish condition between areas, seas/oceans, depths, and habitats. 
Therefore condition indicators can be used as indicators of the quality of habitats that fish 
inhabit, thus contributing to the identification of EFHs, evaluation of the effect of habitat 
protection (marine reserves), or determination of the value of particular depths and areas for 
the productivity of fish stocks. Hence, using condition indicators to compare habitats assumes 
that the indicators reflect the habitat’s value in which the fish live. Most studies have dealt 
with differences in abundance and abundance and/or mean length and age between habitats 
as a way to evaluate habitat quality, but seldom have used the condition approach. Taking into 
account these differences in condition related to habitat and the importance of individual 
condition for the overall success of the population, condition indicators could be used as 
markers of habitat quality and can therefore constitute a useful tool for identifying high-
quality habitats or EFHs for exploited species, as well for identifying the effects of the 
establishment of marine protected areas (MPAs) as a tool for fisheries conservation.

In fact, in freshwater environments and estuaries, fish condition assessment is playing an 
increasing role in both fishery management and environmental monitoring policy because 
useful health indicators are capable of detecting responses to different habitat characteris-
tics that can affect the fitness of an organism with population-level consequences (Leamon 
et al., 2000). In several rivers and lakes around the world, a close relationship has usually 
been found between water quality and fish condition (e.g., Leamon et al., 2000; Benejam 
et al., 2008).

6.1.1	 Large-scale differences in fish condition

Large-scale differences in condition occur in both demersal and pelagic fish species and 
express differences in habitat quality among regions of the oceans and seas. With regard to 
demersal fish, a comparative analysis of Fulton’s K condition factor of 10 cod stocks in the 
North Atlantic showed that they display different levels of mean condition, partly due to the 
different temperature regimes of their habitats (Rätz & Lloret, 2003). Cod living in colder 
waters, such as Greenland, Labrador and Grand Bank stocks, were found to be in poorer 
condition than cod living in warmer waters, for example North Sea and Irish Sea stocks 
(Fig.  6.1). Thus, different areas in the North Atlantic display differences in temperature 
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regimes that seem to determine in part the condition of resident cod. Yet Love et al. (1974) 
had already indicated in the early 1970s the large-scale differences in the condition of 
cod, showing that the Faroe Bank cod are uniquely corpulent compared with any others 
inhabiting other fishing grounds, and that their livers were unusually large and creamy 
and their muscle had greater amounts of total protein and glycogen than cod from the 
Faroe Plateau, Fillyas Bank, Minch or Fiskernaes grounds. According to the authors, the 
better-conditioned Faroe Bank cod benefit from an unusually large food supply because 
of the particular oceanographic features of that area. Similar, Lee and Khan (2000) found 
that cod taken at southern localities off coastal Labrador (northwest Atlantic) were pre-
dominantly in better condition than those from northern areas. Furthermore, Pardoe et al. 
(2008) showed strong interannual and spatial variation of mean hepatosomatic index 
(HSI) (Fig. 6.2) and relative condition factor of immature and mature cod in shallow and 
deep waters.

Additionally, in the northwest Mediterranean, geographic and bathymetric differences in 
the condition of several groundfish species have been observed. For example, the lipid 
content in the muscle of Pagellus acarne and Pagellus erythrinus was higher in the Gulf of 
Lions than in the Catalan Sea (Fig. 6.3; Lloret et al., 2005). Similar results were reported 
by Shulman (1972a), who found that small pelagics such as sprats and sardines off the Gulf 
of Lions had considerably higher fat content than that of sprat Sprattus sprattus and sardine 
Sardina pilchardus in other areas of the Mediterranean Sea. The differences in lipid content 
between individuals from the Gulf of Lions and the Catalan Sea were probably due to dif-
ferences in productivity between both areas. The Gulf of Lions, located at the western and 
northernmost part of the Mediterranean Sea, is one of the most productive areas of the 
Mediterranean Sea due to a number of hydrographic features, including a wide shelf, 
important river runoff (Rhône River), strong vertical mixing in winter, and occasional 
coastal upwelling. The waters from the Catalan Sea are less productive due to a narrow shelf 
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Figure 6.1  Linear regression between condition factor and average bottom temperature (°C) for  
10 North Atlantic cod stocks. Stock abbreviations: Greenland (GR), Georges Bank (GB), S. Gulf of  
St Lawrence (SL), Southern Grand Bank (SB), Northern Cod (NO), North-east Arctic (NE), NW Scotland 
and Ireland (SC), Irish Sea (IR), North Sea (NS), Iceland (IC). From Rätz & Lloret (2003).



Figure 6.2  Cod (Gadus morhua) off Iceland. Interannual (1993–2006) and spatial variation of  
mean hepatosomatic index (H, %) of age 5 year immature and mature cod in (a) shallow (<200 m)  
and (b) deep (>200 m) water, and age 6 year immature cod in (c) shallow and (d) deep water. The 
horizontal dashed line shows the overall mean for the age present in each plot. Open circles, both sexes 
combined; triangles, mature females; asterisks, mature males. From Pardoe et al. (2008).



162  Condition and Health Indicators of Exploited Marine Fishes

and less important river runoff and winds. Thus, the Gulf of Lions seems to provide good 
food supply for some fish species.

Furthermore, there was a significant effect of depth on lipid content of Mullus barbatus, 
M. surmuletus and P. acarne, fish with the highest lipid levels inhabiting the shallowest parts 
of the Gulf of Lions (all three species) and the Catalan Sea (last two species; Fig. 6.4; Lloret 
et al., 2005). The bathymetric trends of lipid content suggest that deeper areas of distribution 
of some species represent a marginal habitat in terms of food resources. In contrast, shallow 
areas of distribution, which fish with higher lipid levels inhabit, may constitute EFHs for 
some demersal species. In coastal areas there is often more food available than in the open 
sea, so fish tend to be better nourished.

This spatial and bathymetric condition of fish in the northwest Mediterranean has been 
particularly studied for hake (Lloret et al., 2002; Ferraton et al., 2007; Hidalgo et al., 2008). 
Condition of juvenile hake in the Gulf of Lions was found to be lower in deep waters and in 
areas where the food supply is low (Lloret et al., 2002; Ferraton et al., 2007). Thus for 
example, in 2003, juvenile hake located in deep waters had a lower condition factor than 
those living in shallow waters (Ferraton et al., 2007). According to the authors, the main 
difference in the feeding of juveniles in deep waters was a diet composed mainly of shrimps 
in 2003, which provided a less energetic source of food than fish (the main prey in shallow 
waters), and small crustaceans (mysids and euphausiids), the main prey in deep waters in 
2002, when no bathymetric differences in condition of juvenile hake were found (Ferraton 
et al., 2007). In the Balearic Islands the HSI of recruits, post-recruits and young adults was 
higher in the northern part (Sóller area) than in the southern part (Cabrera area) for all sizes 
analyzed, a fact that was attributed to the different oceanographic conditions existing in the 
north and the south (Hidalgo et al., 2008). According to the authors, the observed differ-
ences in the condition of recruits between areas could be a consequence of the fact that the 
northern coast of the Balearic Islands is more subject to periodic productivity events and the 
earlier arrival of waters formed in more productive areas. This was consistent with fullness 
index values, which were higher at the northern coast than at the southern coast, suggesting 
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Figure 6.4  Linear relationships between depth and muscle lipid content (ln transformed data) of  
(a) Mullus barbatus in the Gulf of Lions (y = 1.490 – 0.016x; n = 76, r2 = 0.423, P < 0.001), (b) Mullus 
surmuletus in the Gulf of Lions and Catalan Sea (y = 0.552 – 0.007x; n = 90, r2 = 0.125, P < 0.001) and  
(c) Pagellus acarne in the Gulf of Lions and Catalan Sea (y = 1.434 – 0.017x; n = 268, r2 = 0.174, 
P < 0.001). From Lloret et al. (2005).
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higher food consumption by hake (more food supply) at the northern coast, which seems to 
enhance the condition of hake in that area (Hidalgo et al., 2008). Also in the Adriatic Sea, 
the fatness of juvenile red mullet decreases from the Delta of the Po River towards the Strait 
of Otranto, paralleling a decrease in the food supply (see section 5.1.1. and Figure 5.3).

Large-scale spatial variability in fish condition is also observed in pelagic species. For 
example, spatial differences in condition have been found in anchovy in the Mediterranean 
Sea, Sea of Azov and Black Sea. The most important indicator of condition and food supply 
for anchovies from these seas, namely the energy levels stored in the form of neutral lipids 
that individuals accumulate in their muscles at the end of the autumn feeding period 
(Shulman, 1974; Shulman & Love, 1999; Nikolsky et al., 2009a,b), displays strong spatial 
and interannual variability. Compared with Azov and Black Sea anchovy, whose muscle 
lipid content ranges between 15 and 20% of wet mass respectively at the end of the feeding 
season, Mediterranean anchovy accumulate less than 10% lipid in their muscles (Shulman, 
1974; Zlatanos & Laskaridis, 2007). In general, fish from the Mediterranean Sea (mackerel, 
horse-mackerel, red mullet and pilchard) are less fatty than those from the Black Sea 
(Shulman & Love, 1999). These spatial differences in muscle lipid levels of several species 
from the Black Sea and the Mediterranean probably reflect the marked differences in 
productivity between the areas and hence the differences in habitat quality: the highest food 
supply (i.e., higher zooplankton biomass productivity) is seen in the Sea of Azov and the 
Black Sea compared with the Mediterranean Sea, and is likely to be linked with the strong 
riverine nutrient inputs from the large rivers flowing into the Sea of Azov and the Black Sea 
(Danube and Dnieper rivers in the Black Sea and Don and Kuban rivers in the Sea of Azov; 
Ludwig et al., 2009). In the Sea of Azov, the lipid content of anchovy also varies spatially, 
with good agreement between the distribution of zooplankton biomass in late summer and 
the fatness of this species (Shulman & Love, 1999). And in the Black Sea, highest fat content 
in sprat Sprattus sprattus phalericus is found in the population that feeds in the region adja-
cent to the Danube estuary (Fig. 5.2; Minyuk et al., 1997).

In addition, capelin fat content was highest in northeastern regions of the Barents Sea 
(Orlova et al., 2010). Thus, capelin from the northeastern region had significantly higher fat 
levels (10.1%) than those from either the northwestern (8.8%) or central (8.4%) regions in 
2006. Finally, on the Portuguese Atlantic coast, spatial variation in sardine Sardina pilchar-
dus dietary fatty acids was detected in their muscle composition, specifically for n-3 
polyunsaturated fatty acids, namely eicosapentaenoic acid (EPA) and the ratio of EPA to 
docosahexaenoic acid (DHA) and the n-3/n-6 ratio, which were higher in sardines from the 
west coast, where upwelling is stronger and prey (phytoplankton) availability is higher than 
is the case of the south coast (Garrido et al., 2008).

Spatial differences in fish condition are more apparent in freshwater ecosystems, where 
confined water masses facilitate the existence of populations with different biological char-
acteristics. For example, lipid values for several freshwater fish species inhabiting the Great 
Lakes significantly differed among lakes, with Lake Erie values being significantly higher 
than those for Lakes Huron and Superior for example (Neff et al., 2012).

6.1.2	 Small-scale differences in fish condition

Small-scale variation in fish condition has been widely studied for several species, particu-
larly in coastal areas and estuaries, in order to characterize suitable habitat for settlement of 
juveniles or suitable habitat for feeding. Characterization of suitable habitat for settlement 
of juvenile fish is important for the management of nursery areas. In this sense, several 
studies have confirmed the validity of physiological condition performance of juvenile fish 
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as habitat quality indicators in highly variable environments such as estuarine nurseries. 
Thus for example, in Galveston Bay (United States), the differences in RNA/DNA ratios 
between recruits of southern flounder Paralichthys lethostigma inhabiting different areas 
suggested that not all parts of the bay function equally as nurseries (Glass et al., 2008). 
Southern flounder from West Bay had significantly lower RNA/DNA ratios than those from 
East Bay and Galveston Bay, with no significant difference in condition between East Bay 
and Galveston Bay (Glass et al., 2008). In contrast, at a smaller scale (i.e., habitat-specific), 
differences in density, condition, and growth were not evident between habitats in close 
proximity, suggesting a variety of habitats maintained conditions favorable for condition of 
newly settled southern flounder.

In the Seine estuary (France), the RNA/DNA ratio and morphometric (Fulton’s K) 
condition indicators of 0-group European flounder Platichthys flesus were used as indica-
tors of estuarine habitat quality (Amara et al., 2009). The authors compared the condition in 
the Seine estuary to two smaller estuaries considered as clean (low domestic, agricultural 
and industrial effluents) and found that RNA/DNA ratio and K values were significantly 
lower in individuals from the Seine compared with the cleaner estuaries (Fig. 6.5). On the 
basis of the results, the authors suggested that habitat-specific fish growth and condition are 
useful proxies for habitat quality since they integrate the effect of multiple environmental 
factors. De Raedemaecker et al. (2011) found significant differences in condition of juvenile 
plaice Pleuronectes platessa between hauls and between beaches from the southwest coast 
of Ireland. The results highlighted the importance of considering small-scale variation when 
attempting to link habitat quality to feeding, growth, and condition of juvenile flatfish. In the 
Bay of Biscay, indicators of growth and condition were used to compare the habitat quality 
of nurseries of juvenile sole Solea solea (Gilliers et al., 2006). Condition indicators did not 
show any latitudinal pattern but highlighted low condition values in semi-enclosed sheltered 
marsh areas little affected by rivers, compared with the Gironde estuarine areas (Gilliers 
et al., 2006). In addition, morphometric (Fulton’s K condition index) and lipid (triacylglyc-
erols/sterols ratio) condition indicators measured on 0-group juveniles of common sole 
were used to compare the habitat quality of different nursery grounds along the French coast 
of the Southern Bight of the North Sea and the eastern English Channel with differing levels 
of anthropogenic pressure (Amara et al., 2007). Results indicated consistent differences in 
the condition indicators of 0-group sole among different sites. Sole had the lowest condition 
indicators at two sites located in intensively developed and industrialized harbor areas such 
as Dunkerque and Calais, and the highest condition indicators at three other sites located 
near small estuaries less subject to human pressure such as Canche, Authie, and Somme 
(Amara et al., 2007). The indicators measured in this study correlated well with anthropo-
genic disturbance and may provide a useful tool for assessing habitat quality. Sites with the 
highest levels of chemical contaminants in sediment had the lowest habitat quality and, 
through growth and lipid-storage limitation, could dramatically lower overwinter survival of 
the juveniles living in these nursery grounds.

Furthermore, RNA/DNA ratio and Fulton’s K condition factor were determined in 
juveniles of Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and 
Dicentrarchus labrax collected in several putative nursery areas of nine estuaries along the 
Portuguese coast (Vasconcelos et al., 2009). Results highlighted species-specific trends in 
the variability of condition amongst estuaries as some estuaries had higher juvenile 
condition for more than one species (Table 6.1). Furthermore, intra-estuarine variation in 
condition of the studied species was also observed (Table 6.2). Within the analyzed estu-
aries, higher condition values were generally found in sheltered areas with intertidal flats, 
and in the case of S. solea and P. flesus in sites where juvenile densities were not the highest, 
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as well as in areas with seagrass beds (Vasconcelos et al., 2009). According to the authors, 
intra-estuarine variability of species’ RNA/DNA ratios provides key insight on differential 
habitat quality within estuaries and may indicate sites that provide enhanced nutritional 
status and growth and which may be in higher agreement with the nursery role hypothesis 
than others.
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Further, Tanner et al. (2009) assessed condition of pouting Trisopterus luscus in nursery 
areas and other coastal areas along the Portuguese coast using different indicators. Fulton’s 
K condition factor, RNA/DNA ratio, and total protein content were determined for 0-group 
pouting collected in three shallow nursery grounds (Fig. 6.6). Adult pouting were sampled 

Table 6.2  Intra-estuarine variation in condition indices

RNA/DNA¢ Fulton’s K¢

Species Estuary Sites Year df t P t P

S. solea Mondego a vs. b 2005 & 2006 68 −2.67 <0.01 −0.58 NS
2005 13 −0.89 NS −0.46 NS
2006 53 −2.58 <0.05 −0.51 NS

Mira a vs. b 2006 41 −6.19 <0.001 2.02 NS

P. flesus Minho a vs. b 2006 18 −1.60 NS 0.62 NS
Douro a vs. b 2005 25 −0.32 NS 1.26 NS

D. vulgaris Mondego b vs. c 2006 36 0.28 NS −0.61 NS
Sado b vs. c 2005 28 −0.05 NS 0.42 NS
Mira b vs. c 2005 & 2006 51 −1.13 NS −0.80 NS

2005 22 −2.26 <0.05 0.51 NS
2006 27 0.77 NS −1.06 NS

R. Formosa a vs. b 2006 54 −5.80 <0.001 −1.29 NS

D. labrax Tejo a vs. b 2005 39 2.30 <0.05 −2.14 <0.05

t-test results of RNA/DNA′ and Fulton’s K′ (both indices corrected for fish length) in juvenile Solea solea, 
Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax between sites within a Portuguese estuary 
(in July 2005 and 2006).
Source: Vasconcelos et al. (2009).

Table 6.1  Inter-estuarine variation in condition indices

RNA/DNA¢ Fulton’s K¢

Species Year n df F P F P

S. solea 2005 & 2006 211 5 24.86 <0.001 4.67 <0.001
2005 85 3 5.23 <0.01 5.29 <0.01
2006 126 5 22.91 <0.001 2.42 <0.05

S. senegalensis 2005 & 2006 91 2 17.17 <0.001 5.27 <0.01
2005 59 1 16.33 <0.001 1.96 NS
2006 32 1 0.04 NS 10.66 <0.01

P. flesus 2005 & 2006 136 3 28.74 <0.001 2.49 NS
2005 77 2 18.31 <0.001 1.71 NS
2006 59 3 18.94 <0.001 2.80 <0.05

D. vulgaris 2005 & 2006 356 6 22.28 <0.001 4.82 <0.001
2005 162 5 9.99 <0.001 2.11 NS
2006 194 5 20.29 <0.001 3.48 <0.01

D. labrax 2005 & 2006 203 3 5.12 <0.01 3.78 <0.05
2005 138 3 3.54 <0.05 3.95 <0.01
2006 65 3 2.48 NS 2.25 NS

Results of ANOVA comparisons of RNA/DNA′ and Fulton’s K′ (both indices corrected for fish length) in 
juvenile Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax 
amongst estuaries along the Portuguese coast (in July 2005 and 2006).
Source: Vasconcelos et al. (2009).
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in 10 sites along the coast and Fulton’s K, HSI, total protein content, and water content were 
determined as indicators of condition. For 0-group individuals, only total protein content 
showed significant differences among the sites, whereas in adults all the indicators evalu-
ated differed significantly among the sites.

Small-scale spatial differences in condition of white seabream Diplodus sargus in the 
northwest Mediterranean were clearly attributed to differences in habitat quality too (Lloret & 
Planes, 2003; Lloret et al., 2005). These studies revealed differences in the condition of 
white seabream between adjacent habitats: during the juvenile phase, fish condition was 
generally higher on the rocky coast than on the sandy coast (Fig. 6.7). On the basis of these 
results, the authors indicated that rocky areas may potentially contribute more to production 
of white seabream than the sandy coasts and are therefore potential EFHs for this species; 
and that MPAs might offer increased production for white seabream, providing long-term 
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Figure 6.6  Total protein content variations in white muscle tissue (mean ± standard deviation) of 
Trisopterus luscus adults, and sea surface temperature (SST, monthly mean values) along sampling 
locations off the Portuguese coast. Sampling locations follow a latitudinal gradient, from A1 
northernmost position to A10 southernmost position. From Tanner et al. (2009).
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benefits to the local fishery of this species. The rocky habitat might provide a better environ-
ment in terms of food, predation risk, or energy expenditure.

Other studies indicate that wide variations in condition indicators exist between geo-
graphically proximate estuaries, which are caused by variable microhabitats or differences 
in resource partitioning. Thus, for example, large variation in liver glycogen content, liver–
somatic index, condition factor, and RNA/DNA ratio exists among four health indicators in 
natural populations of the estuarine fish Fundulus heteroclitus from five geographically 
proximate estuaries in southeastern Connecticut (Leamon et al., 2000). In this study the 
authors discuss the significance of this variability and its impact on the use of the indicators 
as bioindicators of environmental perturbation in estuaries.

At sea, age-0 pollock Theragra chalcogramma collected offshore of a hydrographic front 
in the Bering Sea were found to have a significantly higher Fulton’s K condition factor that 
those found inshore of the front (Brodeur et al., 2000). The significantly higher condition 
factors in the offshore habitat imply that conversion efficiency may be better there than at 
the front of inshore. Since the authors were unable to detect any direct trophic benefits for 
young pollock remaining in these frontal regions, as opposed to residing in offshore waters, 
they indicated that other considerations (i.e., refuge from predation) make occupying this 
habitat more beneficial (Brodeur et al., 2000). Similarly, the nutritional condition of anchovy 
larvae in the Bay of Biscay (northeast Atlantic) showed a clear spatial pattern, with better-
conditioned larvae found in stations influenced by freshwater discharge (Bergeron, 2000). 
This makes these stations particularly valuable for the anchovy larvae.

In the Balearic Islands, for example, the condition of red scorpionfish Scorpaena 
notata was affected by the algal biomass (mostly red algae) (Ordines et al., 2009). Hence 
results from this study showed that the somatic condition of S. notata were positively corre-
lated with algal biomass (Fig.  6.8). The algal biomass present in the bottoms positively 
affected not only the condition of S. notata but also its feeding potential and abundance. 
In addition, individuals inhabiting bottoms with the highest algal biomass showed faster 

Figure 6.7  Differences in lipid content of muscle and liver of juvenile white seabream Diplodus sargus 
between the unprotected shallow zones of rocky and sandy habitats in the northwest Mediterranean. 
Values are mean ± se. Number of samples given in parentheses. From Lloret & Planes (2003).
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growth than the entire population analyzed together. According to the authors, both the 
structural complexity and the availability of prey in the facies with red algae are 
revealed as advantageous traits for the life history of fish. These results highlight, using 
condition indicators, the importance of the facies with red algae as an oasis of high 

Figure 6.8  Bubble maps representing (a) abundance (individuals/km2), (b) somatic condition (SC), 
and (c) feeding potential (FP) of red scorpionfish Scorpaena notata in the Mediterranean, plotted over 
the contour map showing algal biomass. From Ordines et al. (2009).
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productivity where benthic fish can circumvent the general oligotrophic conditions of the 
Mediterranean, and the necessity of urgent management measures in order to protect them 
from human impacts (Ordines et al., 2009).

Also in the Mediterranean the relative body and liver masses and stomach contents of red 
mullet Mullus barbatus caught on maerl beds of the Aegean Sea were found to be higher 
than those caught on adjacent muddy bottoms (Somarakis et al., 2004). Similar indications 
were provided by Lloret et al. (2007), who found better-conditioned M. barbatus in the 
eastern part of Valencia, where the presence of maerl beds is important. In Newfoundland 
waters, small to medium-sized cod in Smith Sound were generally in poorer nutritional 
condition than those in nearby Placentia Bay (Rideout & Rose, 2006). This spatial difference 
was explained by the fact that good-conditioned Placentia Bay cod fed more heavily on 
capelin than those in Smith Sound and that they fed year-round, whereas poor-conditioned 
Smith Sound cod ceased feeding during winter (Rideout & Rose, 2006).

In some cases the positive correlation between abundance and condition of fish has been 
hypothesized to be indicative of habitat selection. For example, an examination of the 
condition of haddock Melanogrammus aeglefinus at 24 sites in the North Sea in 2004 
revealed that at a given temperature, HSI was better at stations where haddock were most 
abundant, indicating that there was some habitat selection by haddock (Hiddink et al., 2005).

Not only total fat but also lipid composition can vary among different habitats. Thus, for 
example, the fatty acid profile of the galaxiid fish Galaxias maculatus collected from an 
estuarine habitat (a river mouth), a freshwater creek, and two land-locked freshwater lakes 
in Victoria (Australia) were investigated by De Silva et al. (1998) with a view to evaluating 
habitat influences on the fatty acid profile. The study concluded that in addition to the diet, 
other habitat-related factors could influence the fatty acid profile in G. maculatus. Also the 
lipid composition and content of the small common wrasse Symphodus ocellatus was differ-
ent according to the quality of the biotope. Young fish from a Caulerpa taxifolia meadow in 
France contained less lipids (−21%) and a different lipid class distribution than those from 
a Posidona oceanica bed (Levi et al., 2005; Fig. 6.9). The authors attributed these differ-
ences to the fact that the invasive alga C. taxifolia diminishes the availability of benthic prey 
for fish (particularly mollusks, amphipods, and copepods).

Figure 6.9  Posidonia oceanica meadows in the Mediterranean Sea. Photo by Toni Font.
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6.1.3	 Condition as an indicator of habitat protection

Many studies have shown that marine protected areas (MPAs) enhance species richness, 
abundance, biomass, and stock size structure (see Roberts & Polunin, 1991 for a review) 
and thus have the potential to enhance fisheries in adjacent areas through export of bio-
mass. Furthermore, a few studies have shown that habitat protection may also affect fish 
condition positively. In the northwest Mediterranean, Lloret and Planes (2003) and Lloret 
et al. (2005) found that adult white seabream D. sargus were better conditioned within the 
rocky areas of the MPAs of Banyuls-Cerbere (France) and Cap de Creus (Spain) than in 
adjacent unprotected rocky areas of the northwest Mediterranean coast. In the MPA of 
Banyuls-Cerbere (Lloret & Planes, 2003), higher muscle lipid levels and HSI were detected 
in post-spawners in the shallow rocky protected area compared with the shallow rocky 
unprotected area (Fig. 6.10). In the MPA of Cape Creus, spawners caught in the protected 
rocky area of the marine reserve had higher muscle lipid content than those caught in the 
adjacent unprotected rocky areas (Lloret et al., 2005). The findings of these investiga-
tions support the importance of rocky coastal protected habitats for the energy reserves of 
D. sargus in the Mediterranean Sea. Thus, it seems that marine reserves may enhance the 
condition of fish through an increase in food availability, better habitat quality or less stress 
from fishing activities.

6.1.4	 Bathymetric quality

In some cases fish condition has been related to depth, with deep waters being considered as 
marginal habitat for demersal species in terms of food resources as the poorest conditioned 
individuals were found there. In the southern Gulf of St Lawrence (Canada), for example, 
condition of cod was low in deep waters (Fig. 6.11; Chouinard & Swain, 2002). Also, there 
was a significant effect of depth on lipid content of Mullus barbatus, Mullus surmuletus and 

Figure 6.10  Differences in hepatosomatic index (HSI) and muscle lipid content of post-spawners of 
white seabream between the shallow zones of rocky protected and rocky unprotected areas. Means are 
indicated with the SE. No. of samples given in brackets. From Lloret & Planes (2003).



Fish condition as a measure of environmental status and habitat quality  173

Pagellus acarne in the Mediterranean, fish with the highest lipid levels inhabiting the 
shallowest parts of the Gulf of Lions (all three species) and the Catalan Sea in the northwest 
Mediterranean (last two species; Lloret et al., 2005). The poorer overall feeding conditions 
of deep water for the accumulation of energy reserves in several fish species in the northwest 
Mediterranean was also observed by Lloret et al. (2002). In this case, lower K and HSI 
values were found in deep waters for several demersal fish species. Overall, results from 
these studies support the relative importance of shallow areas of the continental shelf for the 
productivity of different exploited fishes.

6.2	 Condition of exploited fish and their predators

A reduction in fish energy reserves does not only affect the specific population success but 
may also impact on the reproductive output of their predators. Thus for example, low energy 
values of sandeel Ammodytes marinus and sprat Sprattus sprattus appeared to be the 
proximate cause of breeding failure in 2004 of the common guillemot Uria aalge, the most 
abundant seabird species in the North Sea (Wanless et al., 2005). Many seabirds in the North 
Sea feed on lesser sandeels during the breeding season. The reasons for the poor fish 
condition in this part of the North Sea are unknown, but the results provide further evidence 
of major changes in the North Sea food web. Similar to this, Litzow et al. (2002) found that 
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recovery of pigeon guillemot Cepphus columba populations in the Gulf of Alaska and 
Bering Sea from the effects of the Exxon Valdez oil spill was limited by availability of lipid-
rich fish prey. Thus, scarcity of lipid-rich schooling fish such as sand lance Ammodytes 
hexapterus negatively affected pigeon guillemot populations in the Gulf of Alaska. This is 
because the presence of sand lance in the diet was associated with higher rates of energy 
delivery to the nest, higher chick growth rates and shortened duration of chick rearing 
(Fig. 6.12), improved chick survival, decreased brood reduction, and increased reproductive 
success (Litzow et al., 2002). It is important to thoroughly characterize the lipid content and 
fatty acid composition of fish such as sand lances, sprats, and sardines that serve as food for 
many predators because these variables may be different from species to species (even in the 
same genus). For example, Kaneniwa et al. (1997) found that one species of sand lance, 
A. personatus, contains higher levels of total lipid in muscle and viscera than another sand 
lance species, A. hexapterus, on the coast of northern Hokkaido (Japan). Similar to this, 
Payne et al. (1999) evaluated the proximate composition of some northeastern Pacific forage 
fish species, and found differences ranging from 6.7 to 19.4% for protein, from 1.2 to 21.4% 
for lipid, from 64.6 to 91% for moisture, and from 0.6 to 4% for ash.

The response of other piscivores to the variable abundance of high-lipid and low-lipid 
prey has also been observed in the Gulf of Alaska. A shift to a warm-water regime in 1977 
resulted in a more than 90% decline in populations of capelin Mallotus villosus, a lipid-rich 
schooling fish, and a greater than 250% increase in populations of lipid-poor demersal fish 
(mostly Gadidae and Pleuronectidae) (Anderson & Piatt, 1999). This dramatic ecosystem 
change apparently cascaded through higher trophic levels, as the proportion of capelin and 
other lipid-rich fish in diets of piscivorous birds and mammals declined, and populations of 

75

r 2= 0.21
P = 0.001

50

0

P
ro

vi
si

on
in

g 
ra

te
(k

J/
ch

ic
k 

pe
r 

h)

25

0
0

30 r 2= 0.14
P = 0.047

B
et

a 
ch

ic
k

gr
ow

th
 r

at
e 

(g
/d

ay
)

20

10

0,2 0,4

Proportion of sand lance in diet

0,6 0,8 1

Figure 6.12  The effect of high-lipid prey on nestling provisioning and growth rates of the pigeon 
guillemot Cepphus columba in the Gulf of Alaska and Bering Sea. Beta chick growth rates are for chicks 
aged 5–20 days. Fourteen data points lie on the y-axis in the top panel, 12 in the bottom panel. From 
Litzow et al. (2002).



Fish condition as a measure of environmental status and habitat quality  175

these high trophic level consumers declined by as much as 95% (Merrick et al., 1997; Agler 
et al., 1999).

In addition, fatness of capelin is directly linked to their value for higher predators, such as 
Atlantic cod, seabirds, and marine mammals. Small variations in fat content of prey can be 
critical for reproduction and survival of Arctic top predators (e.g., Karnovsky et al., 2003), 
and this may act in combination with variations in stock size, distribution, and age structure 
of capelin to determine dynamics of their predators. Also, Ball et al. (2007) determined 
proximate composition and energetic value of a suite of potential forage fish collected from 
an estuary on the Yukon–Kuskokwim Delta, Alaska and based on observed energetic differ-
ences concluded that variation in fish size, quantity, and species composition of the prey 
community could have important consequences for piscivorous predators.

Overall, these results support the importance of evaluating the condition of forage fish 
(mostly small pelagic fish such as sand lances, capelin, herring, sardines and anchovies) for 
understanding the relative dietary value of these forage fish as prey (for piscivorous fish 
such as cod and hake or for top predators such as birds and mammals) (Fig. 6.13).

6.3	 Fish condition as an indicator of climate-driven 
and anthropogenic changes in the ecosystem

Studies have shown that the decline in the condition of several top consumers in the North 
Atlantic could be due to climate-driven changes in the pelagic marine ecosystem. Thus, for 
example, the negative correlations between condition of salmon Salmo salar and ocean 
warming (Todd et al., 2008) could be due to reduced prey availability for pre-adult salmon 
in connection with climate change. There are also recent observations of breeding failure for 
European seabirds correlating with ocean warming and reduced (fish) prey availability (e.g., 
Durant et al., 2003) and of declining somatic condition and lipid content of tuna Thunnus 
thynnus in the northwest Atlantic (Golet et al., 2007).

Figure 6.13  Dolphins and seabirds feeding on fish along the Gulf of Lions coast in the northwest 
Mediterranean. Photo by Gemma González, projecte NINAM, www.projecteninam.org.
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Here we deal with the monitoring of food supply/nutrition condition of marine fish, 
because this aspect has been studied in detail. It is important to remember that food is a key 
aspect that connects living organisms with their habitat. Food supply is not a simple notion 
and demands detailed explanation (Shulman et al., 2009a,b). The food supply of organisms 
and populations (F

s
) can be described as the ratio between food consumed (F

c
) and food 

required (F
r
):

	 =s c r/F F F 	 (6.1)

The direct determination of these characteristics in field conditions is very difficult. Indirect 
determination of organism and population food supply is also confronted with serious prob-
lems, as it is dependent on many factors, including some which cannot be defined:
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where Ab represents the biomass of fodder organisms, Ab
v
 their nutritional value, Ab

a
 their 

availability, Ac
1
,…Ac

n
 the biomass of consumers of own species as well as competitors of 

other ones, T temperature, L illumination (especially important for aquatic organisms) and 
X

1
,…X

n
 undefined factors. Nevertheless, there is a rather effective way for estimating food 

supply, which is determining the result of the feeding process, which reflects nutritional 
condition such as weight increment (ΔW) and accumulation of energy reserves (ΔE):

	 ∆ ∆ = s,W E fF 	 (6.3)

Weight increment and growth are clearly defined by protein retention, energy accumulation 
(for many marine fish), and by the formation of fat stores (neutral lipids, triacylglycerols 
mainly). Determination of the weight (protein) increment for adult fish is not an easy task. 
For this reason current studies use the RNA/DNA ratio in tissues for estimating the 
“immediate” rate of protein biosynthesis and consequently the growth rate of larvae and fry 
fish (Bulow et al., 1981; Thorpe et al., 1982; Nakano et al., 1985; Varnavsky et al., 1991; 
Bergeron, 2000; Drazen, 2002; Gwak et al., 2003; Smith & Buckley, 2003). Conversely, 
estimation of fat content is an easy and useful method for evaluating the condition of fish. 
This process of energy accumulation begins every year almost from “zero” following the 
spawning period and reaches a peak at the end of the feeding period. The content of reserve 
lipids at the time of feeding completion is therefore an integral indicator of the conditions 
under which fish stocks or populations consumed food:
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Sometimes this indicator is expressed as an index:

	 =s i( ) /I F i F F 	 (6.5)

where F
i
 is fat content in fish at the end of feeding in a certain year and F is average fat 

content at the same time, determined during all observed years. When I(F
s
)i ≥ 1, the food 

supply/nutrition condition of fish individual or population is adequate or good; when 
I(F

s
)i ≤ 1 it is inadequate or bad.
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Determination of fat (neutral lipids) content is widely used for evaluation fish condition 
(see reviews by Shulman, 1960a; Lovern, 1964; Love, 1970, 1980; Shatunovsky, 1980; 
Kreps, 1981; Sidorov, 1983; Ackman, 1989; Minyuk et al., 1997; Adams, 1999; Morris & 
Culkin, 2000; Kolakovska et al., 2003; Kolakovska, 2010). Unfortunately, however, most of 
these investigations did not look at the problem from a food supply point of view. The few 
papers that have been published on the characterization of the feeding history of fish in 
which the food supply was estimated using lipid parameters include larvae of sardine 
Sardina pilchardus (Fraser et al., 1988), Californian anchovy Engraulis mordax (Hakanson, 
1989a,b, 1993), the North Sea sprat Sprattus sprattus (Hakanson & Coombs, 1994), and 
Atlantic cod Gadus morhua (Lochmann et al., 1995). Recently, interesting data have been 
published on the relationship between lipid content and nutritional factors in adult demersal 
fish of the Mediterranean (Levi et al., 2005; Lloret et al., 2005), and in North Atlantic cod 
(Lambert et al., 2000; Yaragina & Marshall, 2000; Orlova et al., 2002). Good fish condition 
affects maturation, improving lipid content in eggs and larvae, and promotes high survival 
and replenishment of populations (Lasker & Theilacker, 1962; Nikolsky, 1965; Guisande 
et al., 1998; Marshall et al., 1999; Sogard & Olla, 2000; Zenitani, 2001). The example of a 
relationship between the fat content of female gonads of Black Sea horse-mackerel and 
fecundity (egg number) and diameter of oocytes has also been observed (Shulman et al., 
1970; Shulman & Love, 1999). Assessment of the food supply of several marine fish popu-
lations by determination of accumulated fat stores (fat content) has been examined since the 
second half of the last century. These investigations involved Pacific sardine in the California 
current (Lasker, 1970), Californian anchovy (Garcia-Franko et al., 1999), and Atlantic cod 
(Marshall et al., 1999; Orlova et al., 1999).

Our investigations have centered on Azov and Black Sea subspecies of European anchovy 
(Shulman & Dobrovolov, 1979) and Black Sea sprat (Shulman et al., 1994, 2005, 2009a,b; 
Minyuk et al., 1997; Nikolsky & Shulman, 2005; Nikolsky et al., 2007, 2011). Anchovy and 
sprat are two key small pelagic fish species of the Black Sea and have significant effect on 
the ecosystem. The nutritional spectrum of both species (copepods) is rather similar. Sprat 
is a cold-tolerant planktivorous fish, spawning in winter and forming local populations. It 
feeds intensively in spring and early summer (Svetovidov, 1964), achieving considerable fat 
stores of about 10–15% of body mass. Conversely, anchovy is a warm-tolerant fish, spawn-
ing in summer, and undertakes long migrations and feeds intensively, preparing for win-
tering migration at the end of summer and early fall. Anchovy, like sprat, accumulates fat 
stores of about 10–15% of body mass, but to the end of the fall (Fig. 6.14). So by deter-
mining fat content in sprat populations at the end of the feeding period in summer and in 
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Figure 6.14  Dynamics of fatness in Black Sea anchovy (1) and sprat (2). After Shulman et al. (2009).
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anchovy in November–December, we can estimate degree of well-being/nutritional 
condition of small pelagic fish in the Black Sea during most of the year. Moreover, condition 
of sprat and anchovy could be an indicator of mesozooplankton biomass (the main food of 
pelagic fish) in the Black Sea as a whole. Indeed, the monitoring of the nutritional condition 
of both species in the Black Sea is undertaken on this basis. Monitoring has been carried out 
on sprat almost every year since 1960, but not on anchovy until more recent years. However, 
the relationship between fat content at the end of feeding in the fall and features of the win-
tering migrations of the Azov (Shulman, 1974, 2002) and Black Sea (Chashchin & Axelev, 
1990; Nikolsky et al., 2011) subspecies has been studied (see section 5.1), and indeed this 
relationship is also affected by food supply. There are only a few investigations in which the 
long-term fat content of fish populations has been monitored: Lasker (1970) on Californian 
sardine, Garcia-Franko et al. (1999) on anchovy from the same region, and Marshal et al. 
(1999) and Orlova et al. (2000) on Atlantic cod. Food supply monitoring of Black Sea 
pelagic fish is necessary not only to estimate their condition but also to assess the pelagic 
ecosystem as a whole. We aim to show here that this monitoring may clarify the complicated 
processes involved in the Black Sea ecosystem, but these cannot be revealed without defining 
food consumption by sprat and anchovy.

It is known that the Black Sea ecosystem has been affected by many factors since at least 
the 1970s (Vinogradov et al., 1992; Kideys, 2002; Sorokin, 2002; Eremeev & Efimov, 
2003). These include eutrophication, pollution, invasion by ctenophore aliens, overfishing, 
and sea warming (climate change). The data on dynamics of fat content in sprat and anchovy 
populations is a significant contribution to the study of the Black Sea ecosystem. Of course, 
the study of fish food supply by lipid characterization must not be limited to indicators of 
fat  content (neutral lipids or triacylglycerols) only. Significant information can also be 
obtained by comparing fractional and especially fatty acid content of fish lipids and the 
lipids of their food (Lovern, 1964; Ackman, 1967, 1989, 2005; Sargent, 1976; Sargent et al., 
1987, 1999; Sargent & Henderson, 1980; Yuneva et al., 2009, 2011). The aim of this section 
is to trace the long-term changes in food supply/nutritional condition of the Black Sea 
sprat and anchovy stocks, based on determination of their fat content dynamics. The objec-
tives of investigation are to reveal how the characteristics studied are connected with (i) the 
dynamics of sprat and anchovy stock biomass, (ii) the dynamics of biomass of the lower 
trophic levels (i.e., zooplankton and phytoplankton), and (iii) climate (temperature) changes 
in the Black Sea.

Dramatic changes in climate have occurred in the last few years in the Black Sea, a 
semi-closed basin that is very vulnerable due to the peculiarities of its hydrological and 
hydrochemical regimes (Eremeev & Efimov, 2003). These changes are mirrored by the 
high trophic levels of the pelagic ecosystem, including the condition of populations and 
stocks of two small pelagic fish, sprat and anchovy, the mass species that dominate the 
Black Sea pelagic ecosystem. These species are indicators of the degree of well-being 
(health) of the ecosystem as a whole, as their condition is the result of processes occurring 
at preceding trophic levels. Significant characteristics of this condition, together with abun-
dance and biomass, is the level of energy stores (neutral lipids, fat) accumulated to the end 
of post-spawning feeding, i.e., the condition of their fodder base (Shulman & Love, 1999). 
The results of more than 50 years’ monitoring of fat content in the sprat population 
(Shulman et al., 1993, 2005, 2007, 2009a,b; Nikolsky & Shulman, 2005; Nikolsky et al., 
2009b, 2011) and more modest data in anchovy (Nikolsky et al., 2009a, 2011) have revealed 
the role of climate change in food supply and nutritive condition of both species. At the 
same time we have tried to observe the influence on these parameters of fodder competition 
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and regional anthropogenic factors, including biogenic river inflow, pollution, aliens, and 
fisheries.

Results of sprat fat dynamics during maximal accumulation (June–August) from 1960 to 
2011 are shown in Fig. 6.15. Data include populations in the northwestern Black Sea, as well 
as Crimea, Caucasus, and Bulgarian coasts. Fat content in sprat exhibits large interannual 
variations. These changes are associated with sprat biomass either positively, when biomass 
is not large, or negatively, when biomass is large (according to the principle of self-regulation) 
(Fig. 6.16). It is notable that there is a positive relationship between sprat fat content and 
phytoplankton biomass (Fig. 6.17). More remarkable is the relationship between sprat fat 
content and mesozooplankton biomass, the main food of this fish. This is demonstrated by 
comparison of Fig. 6.15 and Fig. 6.18, which shows the dynamics of mesozooplankton per 
sprat catch (landing) in the Black Sea from the 1960s to the 1990s. That is obviously caused 
by ingestion of the fodder base by sprat itself, as well as by other forms inhabiting this trophic 

Figure 6.15  Dynamic of fat content in Black Sea sprat at the end of feeding from 1960 to 2011. 
From Nikolsky et al. (2011).

Figure 6.16  Relationship between fat content and biomass of sprat in the Black Sea.
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level (e.g., anchovy). Comparison between fat content in sprat populations (Fig. 6.15), its 
catch biomass (Fig. 6.19), and biomass of phytoplankton (Fig. 6.17) reveals an approximately 
9–11 year period where these variables exhibited conjugate fluctuations (Table 6.3). This 
table also shows the dynamics of surface water temperature in the Black Sea (Fig.  6.20) 
(Nikolsky et al., 2009a,b, 2011). The environmental factors that control the dynamics of sprat 
fatness (Fig. 6.21) show temperature increasing in the 1960s and especially the years since 
1999 in comparison with average years. In the 1970s, 1980s and 1990s annual temperatures 
were below the average long-term values (negative anomalies). Higher temperatures 
predominated first, coinciding with a decrease in fat content in sprat and phytoplankton bio-
mass. In the last few years up to the present, these processes exhibit an especially dramatic 

Figure 6.17  (a) Dynamics of phytoplankton biomass in the Black Sea (Mikaelyan, 1997) and  
(b) relationship between phytoplankton biomass and sprat fat content (Shulman et al., 2005).

Figure 6.18  Dynamics of mesozooplankton (per sprat biomass) in the Black Sea in the 1960s to the 
1990s. After Kovalev et al. (1998) and Shulman et al. (2005).
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Figure 6.19  Biomass (1) and catch (landing) (2) of sprat. After Shulman et al. (2007).

Table 6.3  Decadal changes in the analyzed indicators for the period 1960–2005

Decades

Indicators 1960s 1970s 1980s 1990s
Beginning of the 
21st century

Surface water 
temperature

High Low Low Increasing High

Phytoplankton biomass Decreasing Increasing High High Low
Sprat fat Decreasing Increasing High High Low
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Figure 6.20  Dynamics of water surface annual temperature in the Black Sea. From Eremeev & Efimov 
(2003) and Nikolsky et al. (2011).
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character. A constant increase in water temperature has been accompanied by a sharp decline 
in the biomass of the cold-tolerant complex of phytoplankton (Yunev et al., 2009, 2011) and 
in fat content in sprat body. Data in 2012 show that sprat fatness at the end of the feeding 
period decreased to the lowest value ever observed (about 5%).

How are these processes connected to each other? The negative relationship between tem-
perature change and condition of sprat stocks (level of accumulated fat stores and sprat 
biomass) may be indirectly due to the primary fodder base (i.e., phytoplankton). In cold 
winters more intensive upwelling of water masses occurs and this increases the inflow of 
nutrients to the photic layer used by phytoplankton (Yunev et al., 2011). Because of the 
trophic chain involves phytoplankton to zooplankton to fish, the latter are indirectly influ-
enced by climate, of which sea temperature is an indicator. It is known that the average 
annual temperature of surface water is determined mainly by water temperature during the 
the colder months (February–March). However, in our study, average annual temperatures 
are the best indicators of sea warming (Fig. 6.20). A lower water temperature can also have 
a direct effect on cold-tolerant sprat, increasing its habitation area and promoting fodder 
base utilization. At low temperatures, spawning area, intensity and efficiency of reproduction, 
and survival of eggs and larvae also increase, and this positively affects stock recruitment 
of this species. In addition, conditions are also conducive to the increasing abundance and 
biomass of cold-tolerant forms of zooplankton (copepods of the genus Calanus and 
Pseudocalanus), the favorite food of sprat. Clearly, this situation has promoted considerable 
abundance of sprat in the Black Sea since the second half of the 1970s (Shulman et al., 
2011). Conversely, warmer than average winter temperatures due to a decrease in the influx 
of water masses has negatively influenced primary productivity (and thus secondary produc-
tivity). As a result of this, sprat have exhibited a dramatic fall in fat content, especially in 
latter years, and sprat abundance and biomass have obviously decreased in comparison with 
values in the 1980s. Thus the effect of climate change on phytoplankton biomass and fat 
content in sprat populations has a compound character due to the multiple processes 
occurring in marine basins. This develops more often than not in the same year, although 
sometimes there is a large delay for reasons which we cannot yet explain. Nikolsky (2005), 
on the basis of correlations, calculated the regression between sprat fat content in given year 
FCI (t) and in previous ones FCI (t – 1), FCI (t – 3) with average annual surface temperature 
with 4 years delay SST(t – 4) in the form:

F = f(Biogens)

F = f(Competitors)

60 70 80 90 XXI

Years

F = f(t °)

Figure 6.21  Scheme of environmental factors controlling sprat fat dynamics. After Shulman et al. 
(2007).



Fish condition as a measure of environmental status and habitat quality  183

	 = + + +(t) a0 a1 (t –1) a2 (t – 3) a3 (t – 4)FCI FCI FCI SST 	 (6.6)

where a0, a1, a2 and a3 are coefficients, with values recounted every year as new data is 
received.

Returning to Fig. 6.15, it can be seen that during the 50 years of monitoring, the environ-
ment of sprat habitat in the Black Sea has changed considerably. At the end of the 1960s, 
there was a change in the direction of temperature process in the Black Sea basin (Eremeev & 
Efimov, 2003). This was part of the transformation in all the world’s oceans caused by 
global climate change. At the end of the 1990s, a sharp warming started that has continued 
to the present. The same cyclic processes occur in fish species habitat and fisheries when 
examined in “mega-scopes” of the world’s oceans (Jennings et al., 2001; Klyashtorin & 
Lyubushin, 2007).

Together with the observed local influence of climate on Black sea sprat condition, 
regional factors also have an effect. In some cases these strengthen, and in others weaken, 
this influence. The condition of the Black Sea ecosystem as a whole and its separate 
components during the 1970s and 1980s were seriously affected by anthropogenic inputs. 
Primarily this was river inflow into the Black Sea of phosphates, nitrates, and ammonium 
compounds, the products of intensive agriculture (Konovalov & Murray, 2001; Yunev et al., 
2007) and which increased especially during the so-called “green revolution.” In the 
beginning this process strengthened primary production in the sea (eutrophication), 
increasing sprat food supply (nutritional condition) and stock biomass. However, the 
increase in primary productivity, and thus biomass of phytoplankton and mesozooplankton, 
improved the fodder base for other consumers (medusa Aurelia aurita, anchovy, etc.). This 
caused increasing food competition, leading to sharp fluctuations in sprat fatness in the 
1980s. The increased inflow of biogens (nitrogen and phosphorus) during the 1970s and 
especially the 1980s coincided with severe and growing pollution caused by the rise in 
industrial and agricultural production in the countries of the Black Sea basin and the conse-
quent flow to the sea of harmful chemical substances (heavy metals, pesticides, etc.) of 
terrestrial origin. This weakened the capacity of the Black Sea ecosystem to resist harmful 
influences and, as result, mass invasion of the predator ctenophore Mnemiopsis leidyi 
occurred at the end of the 1980s; this negatively affected the biomass of mesozooplankton 
and destroyed the fodder base of small pelagic planktivorous fish. Nevertheless, during the 
1990s, coinciding with the economic crises in the countries of the Black Sea basin, pollution 
of the sea decreased considerably and as a result ecosystem condition improved and conse-
quently the condition (fat content) and biomass of sprat.

The final anthropogenic factor is fisheries. Because short-cycle small pelagic fish quickly 
restore their numbers and biomass, some authors consider that a decline to 30% of biomass 
does not negatively affect stocks (Ivanov & Beverton, 1985). We also consider that the 
observed ecological and anthropogenic factors (temperature, biogenic outflow, food compe-
tition, pollution), as well as the invasion of Mnemiopsis and its predator the alien ctenophore 
Beroe ovate, could affect sprat stock condition more than the fishery itself. However, 
fisheries have a strong influence on the demographic structure of anchovy stock through 
effects on length and age. In conclusion, while global climate impacts on the Black Sea sprat 
are obvious, regional factors are also relevant, their influence on sprat condition being firstly 
positive but then negative (see Fig. 6.21). During recent years the influence of temperature 
has became especially strong, and this has had a clear negative effect on the sprat population, 
worsening their food supply and level of energy stores accumulated to the end of feeding 
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and thus nutrition condition. Ultimately, this can very seriously affect the abundance and 
biomass of this species in the Black Sea.

The dynamics of neutral lipid (fat, triacylglycerols) content in the Black Sea anchovy can 
be observed from the data obtained during 1955 to 1964 (Danilevsky, 1964; Taranenko, 
1964; Shulman, 1972a, 1974), 1965 to 1973 (Shulman & Dobrovolov, 1979), the 1980s 
(Chashchin & Axelev, 1990) and 2005 to 2011 (Nikolsky et al., 2009a, 2011) (Fig. 6.22). 
These data were obtained in different regions of the Black Sea: northwestern part, and 
Caucasus, Bulgarian and Turkish coasts. Unfortunately, these results are not as representa-
tive as those obtained on sprat, but can provide significant information about condition of 
the most important mass pelagic fish of the basin. We see that energy content in anchovy at 
the end of the autumn feeding migration and the start of wintering in the 1980s and later 
years is higher than that in 1965–1973. The 1980s were years of maximal eutrophication 
(see above) whereas recent years are characterized by a steady increase in temperature: both 
these factors are very positive for development of the fodder base (copepods) of warm-
tolerant anchovy. At the same time stock biomass and catch of anchovy in the Black Sea 
reached maximal values during the 1980s as well as in recent year (FAO, 2011).

To end, it is important to note that the energy content of anchovy near the Turkish coast 
is, as a rule, higher than at the same time in the northwestern Black Sea (Nikolsky et al., 
2011). It is known that anchovy populations from the northwestern region migrate for 
wintering to the Turkish region (Chashchin, 1998). This migration starts with those anchovies 
which have accumulated more energy stores. Anchovies that have accumulated less energy 
probably stay in the northwest over winter. This reinforces our ideas about the significance 
of energy accumulation in preparation for wintering migrations. It is interesting to compare 
data on the nutritional condition of the Black Sea anchovy and sprat. During most years of 
monitoring, these processes develop synchronously. Energy accumulation in both species 
increased during the 1970s, reaching a maximum in the 1980s. The same changes occurred 
with stock values and catches during these decades (FAO, 2011) and were similar in the 

Figure 6.22  Dynamics of neutral lipid (fat) content in the Black Sea anchovy. After Nikolsky et al. 
(2011).
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1990s too. However, in the first decade of the 2000s (and up to the present), energy stores in 
sprat fell and those in anchovy rose. This shows that only during the last few years did tem-
perature became the dominant factor behind the divergence of energy accumulation in the 
two species. In all the preceding years, eutrophication and food competition played domi-
nant roles, causing similar changes in food supply dynamics. The relationship between tem-
perature and fodder base for both species, and presumably for other fish, may be illustrated 
in general by the scheme shown in Fig. 6.23.

It is a pity that there are so few data regarding the monitoring of energy stores for different 
fish species in other regions of the world. This precludes assessment of the dynamics of their 
food supply, although data on the dynamics of stock biomass and catches can help under-
standing of the situation in other regions. Shulman et al. (2005) noted that variability of 
sprat Sprattus sprattus mediterraneus biomass in the Adriatic (data for 1976–1996, Azzali 
et al., 2001) followed a similar temporal pattern as fat content and catches of Black Sea 
sprat. In both cases increasing values from the 1970s to the 1980s were followed by consid-
erable interannual fluctuations during the 1980s and a strong decrease at the end of the 
1980s and start of the 1990s, with restoration during the the 1990s. Data on anchovy 
Engraulis encrasicolus mediterraneus (Sinovcic, 2000; Bombace, 2001) showed a similar 
trend. Further, biomass of phytoplankton (Vucetic, 1988; Caddy, 1990; Marasovich et al., 
1998) and temperature (Caddy, 1990; Halim, 1992; Konovalov, 1995) fluctuated in the 
Adriatic in a similar manner. Similar trends in stocks and catches of anchovy were 
observed  in other regions of Mediterranean (Caddy, 1990; Lleonart & Recasens, 1996; 
Fiorentini et al., 1997). This includes the anchovy stock biomass and catches in the Ionic 
and Aegean seas (Stergiou, 1988), the Tyrrhenian Sea (Arneri, 1996; Bombace, 2001), and 
Lyons Bay, Catalonia Region and Bolear and Andaluse seas (Lopez-Cazorla & Sanchez, 
1986; Pertierra & Lleonart, 1992). In the Catalan Sea, a relationship between anchovy 
catches and primary production was reported (Tudela, 1992). Similar interannual dynamics 
are observed for many species in other seas of the Atlantic Basin: for Benguela anchovy 
Engraulis meridionalis (Lluch-Belda et al., 1992) and Southern African anchovy Engraulis 
capensis (Shelton et al., 1993), for Iceland herring Clupea harengus harengus (Bakken, 
1983), and Iceland and Barents Seas capelin Mallotus villosus villosus (Yakobsson, 1991). 
Remarkably, Californian anchovy Engraulis mordax and Peruvian anchoveta Engraulis 
ringens also show the same regularity, as do California sardine Sardinops caerulea and 
Japanese sardine Sardinops sagax melanostica (Lluch-Belda et al., 1992). In all these cases, 
a rise in stock biomass and catches during the 1970s and 1980s was followed by a large fall 

Figure 6.23  Scheme of the interaction between temperature and food supply. After Shulman & 
Urdenko (1989) and Shulman & Love (1999).
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at the end of the 1980s and recovery (in those cases where data are available) in the 1990s. 
Undoubtedly, these long-term fluctuations have a global character as was suggested by 
Nierman et al. (1999), who analyzed the dynamics of plankton biomass in world oceans, and 
by Klyashtorin and Lyubushin (2007), who studied the dynamics of catches and stock bio-
mass of marine fish in connection with global climate (temperature) fluctuations. A 
significant amount of information on the regularity of climatic changes in the oceans that is 
relevant to the dynamics of fish stocks can be found in Levitus (1994), Doumenge (1997), 
Issar (1997) and Lalli and Parsons (1997).

However, it must be noted that not all species follow the same trends. Biomass and catches 
of sardine Sardina pilchardus in the Mediterranean show opposite fluctuations to those of 
anchovy (Caddy, 1990; Arneri, 1996; Cingolani et al., 1998; Jukic-Peladic et al., 2001; 
Bombace, 2001). Also, catches of Peruvian anchoveta and sardine S. sagax in the Humboldt 
current region show opposite cycles (Lluch-Belda et al., 1992). This asynchronicity obvi-
ously relates to the different relationship of these fish with temperature and fodder organ-
isms. Apart from these examples, there are no similarities in interannual changes in catches 
of Black Sea sprat and Sprattus sprattus in Baltic and Northern seas (Biryukov, 1980; 
Kolakovska et al., 2003). All these examples show the complexity of processes that affect 
condition of pelagic fish in different regions of the world.

Overall, the research on fish condition allows consideration of (i) the central role of global 
climatic factors in regulating condition of small pelagic fish and (ii) monitoring of energy 
(neutral lipid) content in fish populations as a significant “indicator” for estimating food 
supply/nutrition condition of key components of the high trophic level in marine ecosys-
tems. Obviously temperature is the most important global factor by its effect on the intensity 
of water mass circulation and on production processes of different trophic levels, and subse-
quently on food supply and nutrition condition of pelagic fish, since food supply influences 
abundance (number and biomass) of populations and condition (health), maturation, 
spawning, survival of earlier stages, and elimination of adult fish.

Particularly interesting is the relationship between small pelagic fish stock value and 
biomass of phytoplankton as an indicator of the Black Sea pelagic ecosystem. We believe 
that indicators and monitoring of fish condition can signify the condition of the sea eco-
system as a whole. In the following paragraphs we will try to demonstrate this using the 
example of stock value dynamics of summary data of small Black Sea pelagic fish (sprat and 
anchovy).

It is natural to consider that there must be a positive relationship between primary fodder 
base of lower trophic levels and higher ones in a marine ecosystem, especially in the upper 
trophic levels. In the Black Sea pelagic system, the upper trophic levels are mainly repre-
sented by small pelagic fish, because at present the significance of large predator fish, 
dolphins and seabirds is not great. Thus the pelagic ecosystem of the Black Sea can be 
considered as a cybernetic “black box” where primary production (phytoplankton) is the 
input and small pelagic fish the output. We can find an example of such a relationship in 
Jennings et al. (2001). We have data from the Azov-Black Sea Research Institute of Marine 
Fisheries and Oceanography (AzcherNIRO) (Chashchin et al., 1996) for biomass of sprat 
and anchovy stocks in the Black Sea for 1967–1994 and data for aggregate and separate 
catch (landings) from these species from 1967 to the present (FAO, 2011). There is very 
good relationship between both parameters (Fig. 6.24). As an indicator of phytoplankton 
biomass dynamics, we used data for the most productive pre-Danube region of the north-
western Black Sea basin (Mashtakova & Roukhiyainen, 1979; Moncheva & Krastev, 1997; 
Black Sea Data Base, 2003; Yunev et al., 2009, 2011) (Fig. 6.25). This part is considered the 
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main region for reproduction and feeding of sprat and anchovy in the Black Sea. The rela-
tionships are shown in Fig. 6.26 (explanations in the figure legend). In addition to these 
characteristics, we show the relationship between summary stock values of both species and 
biomass of phytoplankton in the Danube region (Table 6.4 and Fig. 6.27). We have named 
this relationship the Q-factor, and this can be used as an indicator (and only as an indicator) 
of pelagic ecosystem condition (Yunev et al., 2009, 2011): low Q-factor values are a proxy 
for poor ecosystem condition and vice versa. With regard to Q-factor, ecosystem condition 
improved in the 1970s due to the increase in eutrophication (we have shown that the positive 
effect of eutrophication on stock value is considerably greater than the negative effect of 
catch); ecosystem condition reached its highest level in the 1980s and 1990s, and is at 
intermediate levels in the 2000s. A dramatic fall in Q-factor during 1988–1992 was caused 

Figure 6.24  Relationship between total stock abundance and total catch of small pelagic fish (SPF, 
anchovy and sprat) in the Black Sea. After Yunev et al. (2009).

Figure 6.25  Stations in area of pre-Danube region used for estimation of phytoplankton abundance. 
After Yunev et al. (2009).
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by the mass invasion of the alien ctenophore Mnemiopsis leidyi. The complete effect of 
eutrophication during the 1970s, 1980s and the beginning of the 1990s on small fish stock 
biomass, as well as on the ctenophore predator, is well observed (compare with fat moni-
toring). During most of the 1990s, due to economic crises in West European countries, 
eutrophication decreased considerably, and this caused a decrease of Mnemiopsis predation 
on small pelagic fish fodder base and, as a consequence, a restoration of their stock values. 
Another significant factor contributing to decreased predation pressure on the fish fodder 
base was the invasion into the Black Sea by the alien predator ctenophore Beroe ovata, 
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Figure 6.26  Dynamics of phytoplankton abundance (biomass) in pre-Danube region and biomass of 
small pelagic fish stocks in the Black Sea. After Yunev et al. (2009).

Table 6.4  Characteristics of the pelagic ecosystem of the Black Sea (mean data for interannual 
periods)

Parameter

Interannual period

0 I II III IV V VI
1967– 
1972

1973–
1979

1980–
1983

1984–
1988

1989–
1992

1993–
1998

1999–
2004

Stock of small 
pelagic fish (kt)

570 1258 1877 1624 640 1300 1570

Phytoplankton 
biomass (kt)

397 1004 2740 3602 1805 1415 1574

Q-value 1.44 1.25 0.69 0.45 0.35 0.92 1.00

Q-value represents relation between average value (biomass) of the stock of small pelagic fish and 
phytoplankton biomass.
Source: after Yunev et al. (2009, 2011).



Fish condition as a measure of environmental status and habitat quality  189

which feeds intensively on Mnemiopsis. In 2000, a new environmental factor – strong 
warming – developed, and this has had a positive role for catches (and fatness) of anchovy 
and a negative or yet indefinite role for catches (and fatness) of sprat. Overall, the Black Sea 
pelagic ecosystem has not returned to the pre-eutrophication level (1960s) or to the high 
level of the 1980s, and at present is at an intermediate level (lower than in the 1970s).

Particularly important is the monitoring of fatty acid composition of sprat and anchovy. 
As previously discussed, the content of polar lipids in fish body remains relatively stable, 
but the content and composition of fatty acids changes greatly. Especially important are the 
changes in content of unsaturated omega-3 fatty acids (EPA and, primarily, DHA). We have 
obtained some data on the dynamics of these acids in phospholipids in comparison with 
triacylglycerols in sprat and anchovy bodies (Yuneva et al., 2011). Data for 2005–2009 
show that intensity of feeding and fodder composition of sprat and anchovy changed consid-
erably. These show that feeding condition in 2006 differs significantly from feeding 
condition in the following years due to the dominance (after 2006) of fodder containing 
smaller amounts of DHA and in some cases EPA.

6.4	 Indicators of interspecific and intraspecific 
differentiation

Up to now very few studies have employed a unified genetic and ecological approach to the 
study of intraspecific differences (Tsuyuki et al., 1965; Altukhov, 1974, 2003; Lukyanenko 
et al., 1991; Peng et al., 2003). Although the results of all these studies are impressive, it is 
a pity that they have only a formal character, because they do not reveal phenotypical eco-
physiological mechanisms of fish adaptations to the environment. Without doubt the 
integration of genetic and ecophysiological approaches will have great success in the future, 
but have not been well developed yet. A good example of an ecophysiological study was 
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provided by the investigations of Ushakov (1963) on the species specificity of temperature 
resistance of isolated tissues and proteins from different forms of animals including fish. All 
studied species have specific adaptations to the temperature environment that affects molec-
ular and tissue structure and functions, and as such temperature resistance can be a good 
indicator of species characteristics. However, Ushakov considered that temperature 
resistance has a universal significance. Species that adapt not to temperature but to other 
environmental factors have corresponding functional features that can be used as indicators 
of species specificity. For example, the degree of lipid unsaturation in Sea of Azov gobies 
may be an indicator of a species in the specific ecological niche that they occupy (in this case, 
degree of oxygen saturation of sea water).

A good example of the importance of a unified genetic and ecological approach in the 
study of intraspecific differences is provided by horse-mackerel in the Black Sea and 
Mediterranean (Fig. 6.28). While the Black Sea horse-mackerel is a small fish (15–20 cm) 
and the Mediterranean horse-mackerel can reach 30 cm, hybrids can grow up to 50 cm and 
even larger (Dobrovolov, 1980). This is an example of heterosis, the phenomenon where 
progeny of diverse varieties of a species or crosses between species exhibit greater biomass, 
speed of development, and fertility than both parents. In addition, there are large differences 
in protein growth and fat accumulation between subspecies of European anchovy in the 
Mediterranean, Black and Azov seas (Fig. 6.29; Shulman & Urdenko, 1989). The differ-
ences in their genetic content are well known (Dobrovolov, 1992), but do not convey 
information about the mechanisms behind their different adaptations to the environment in 
the three different sea basins. For anchovy, differences in temperature and particularly food 
supply are the main triggers of the observed differences in condition. Since zooplankton is 
more abundant in the Sea of Azov, fish spend less energy obtaining food and therefore can 
“save” more towards fat accumulation. In the Mediterranean, zooplankton abundance is the 
lowest, so fish spend more energy obtaining food and therefore fat accumulation is minimal. 
Black sea anchovy are in an intermediate position. Protein and weight (mass) growth 
“conflict” with fat accumulation because fat accumulation reduces protein growth. Because 
of this, Mediterranean anchovy can grow to larger sizes than Azov anchovy. In addition, the 
time available for feeding and growth processes is shorter in the Sea of Azov than in the 
Mediterranean. Yuneva et al. (2011) showed that DHA in phospholipids of Black Sea 
anchovy is higher than that in Azov anchovy (Table 6.5). In our opinion, the reason is the 
difference in food supply. Because Black Sea anchovy must spend more energy to obtain 
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Figure 6.28  Three subspecies of horse-mackerel: small form (Trachurus mediterraneus ponticus); 
medium-size form (T. m. mediterraneus); hybrid (?) form. AA, CC and AC, muscle isozymes of aspartate 
aminotransferase. After Dobrovolov (1980).
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food, it has higher locomotory activity and higher concentrations of DHA to support this. By 
the way, DHA content in muscle phospholipids of the Black Sea anchovy in the summer 
spawning period is higher than that in winter (Fig 6.30). The Black Sea cold-tolerant sprat 
also has a higher DHA content during the summer feeding period than in winter (Fig. 6.31). 
These are examples of an uncorrected “temperature paradigm” that relates change in DHA 
(particularly in ectotherms) to habitat temperature. DHA content can be used for identifying 
both subspecies in different regions of the Black Sea during the fall migration and wintering 
and therefore complements genetic analyses. In this case, former ideas about the distribution 
of the Azov and Black Sea anchovy during the wintering period in the Black Sea must be 
revised (Fig. 6.32). As Yuneva et al. (2011) showed, the C22 content of anchovy phospho-
lipids in the Turkish region are often similar to those of the Azov subspecies.
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Figure 6.29  The races (subspecies) of anchovy: (a) Engraulis encrasicolis maeoticus; (b) E. e. 
ponticus; (c) E. e. mediterraneus. P, protein; F, fat; T, total energy equivalent. From Shulman & Urdenko 
(1989) and Shulman & Love (1999).

Table 6.5  DHA (22:6ω3) content (% of total fatty acids) in 
phospholipids of two anchovy subspecies at the end of feeding 
period, November–December.

Years Sea of Azov anchovy Black Sea anchovy

2006 n = 3 14.32 ± 1.97 — —
2007 — — n = 3 22.14 ± 1.44
2008 n = 3 15.37 ± 2.94 n = 3 26.85 ± 0.36
2009 n = 3 14.49 ± 0.32 n = 4 22.87 ± 1.43
2010 n = 2 15.82 n = 7 25.89 ± 0.78
2011 n = 3 12.48 ± 1.06 — —

n, Trawl numbers.
Source: after Yuneva et al. (2011).
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Figure 6.30  Dynamics of DHA (22:6ω3), EPA (20:5ω3) and total polyunsaturated fatty acids (ΣPUFA) 
in phospholipids of the Black sea anchovy during the annual cycle. After Yuneva et al. (1990).
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Figure 6.31  Dynamics of DHA (22:6ω3), EPA (20:5ω3) and total polyunsaturated fatty acids (ΣPUFA) 
in phospholipids of the Black sea sprat during the annual cycle. After Yuneva et al. (1990).

Figure 6.32  Former view on anchovy distribution in the Black Sea. After Chashchin (1996, 1998).
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Research from other oceans has reported differences in lipid and glycogen content, as 
well as growth of different stocks of cod, haddock, herring, flounder, Arctic char, and other 
species in the North Atlantic including the North Sea, Baltic Sea, Norwegian Sea, Barents 
Sea, and White Sea (Shatunovsky, 1980; Love, 1970, 1975, 1988; Jamieson, 1974; Love 
et al., 1974, 1975; Cloout et al., 2002). Some of these results were discussed in our previous 
book (Shulman & Love, 1999). Similarly with anchovy, in these northern species there is an 
inverse relationship between growth rate and fat accumulation; because of their longer lifes-
pan, the opposite dependence between growth rate, start of reproduction, and duration of life 
cycle is better revealed. Northern fish spend around 4–10% of total energy on maturation, 
while southern fish of the same species (e.g., sprat and herring) spend around 20–40% on 
maturation (Koshelev, 1984).

Intrapopulation (individual) differences also have an ecological foundation. When 
environmental conditions for populations worsen, individual variation in physiological 
parameters increases whether it is lipid and glycogen content in North Atlantic cod (Black & 
Love, 1986) or growth rate of White Sea flounder (Shatunovsky, 1980). We have shown 
some other examples in this book and in the previous one (Shulman & Love, 1999).
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7 � Use of fish condition indicators  
to improve stock assessment  
and fisheries management

Population and individual parameters such as stock abundance, biomass, growth, mortality, 
maturity, and recruitment reflect the productivity of fish stocks and are necessary for 
evaluating the status of an exploited fish population. Knowledge of these parameters is 
increasingly recognized as an important criterion for effective management and conservation 
(reviewed by Young et al., 2006). Apart from a few cases, such as anchovy in the Black Sea 
(Shulman & Love, 1999), fish condition has never been taken into account for stock 
assessment and management. Although condition data alone is of little help to fishery 
managers, when combined with other information (abundance, biomass, size structure, 
exploitation, etc.), condition data will likely help fisheries biologists make correct assess-
ments of population dynamics and environmental and anthropogenic influences.

Although the assessment of fish health is playing an increasing role in fishery management 
and environmental monitoring policy in freshwater ecosystems (see for example Goede & 
Barton, 1990; Sutton et al., 2000; Ebener & Arts, 2007; Brenden et al., 2010), the moni-
toring of fish health indicators in marine ecosystems is scarce and the use of these indicators 
in stock assessment and management is practically nil. Typically, stock assessment and fish-
eries management of marine species have focused on specific individual and population 
parameters (e.g., growth and natural mortality), with no integration of fish health information. 
In particular, the relationship between health status and natural mortality of fish is relevant 

Summary: This chapter shows how fish health indicators in marine ecosystems constitute 
a valuable tool that can be used in stock assessment and management. Furthermore, the impli-
cations of the spatial (interannual and seasonal) and temporal variability in condition for 
fisheries (not only sustainability but also the attainment of maximum yields and maximum 
quality) is reviewed. Based on the examples provided, long-term monitoring of fish condition 
is recommended.

Key words: stock assessment, fisheries management, product quality, maximum yield, seasonal 
and spatial closure, monitoring



Use of fish condition indicators to improve stock assessment and fisheries management  195

because natural mortality M is one of the most influential parameters in fisheries stock 
assessment and management (Beverton & Holt, 1957; Vetter, 1988). Estimates of natural 
mortality relate directly to the productivity of stock yields, sustainable exploitation rates, 
management quantities, and reference points. Unfortunately, in many oceans around the 
world, fish health is not regularly monitored and the linkages between population dynamics 
and fish health have been largely overlooked (Lloret et al., 2012).

7.1	 Fish condition and fishing mortality

Declining condition may decrease the metabolic and swimming capacities of fish and hence their 
ability not only to avoid predation but also to avoid being fished. Thus, fishing mortality could 
potentially be impacted if fish with lower condition have a lower probability of escape from some 
active gears (e.g., trawl) because of a reduced swimming ability (Marshall et al., 2004). Further, 
immediate and delayed mortalities can occur in fish escaping from fishing gear such as trawls 
due to physical damage or stress incurred during capture and escape, particularly for immature 
forms (Chopin & Arimoto, 1995). Thus improving selectivity without reducing damage or stress 
incurred during capture and escape may not be the most appropriate way of protecting immature 
fish. The analysis of fish condition can therefore be used to estimate the unaccounted fishing 
mortality associated with fishing gear damage, and to propose measures other than gear selec-
tivity changes to reduce such mortalities. Finally, it is important to consider the negative impacts 
of bycatch and catch & relase practice (usually attributed to the commercial and recreational 
fisheries, respectively). Released fishes in both cases often display lethal and non-lethal injuries 
caused by fishing practice (reviewed by Lenin et al. 2006 and Cooke and Schramm, 2007). Then, 
the evaluation of the physiological response and condition of fishes that are released would 
improve the estimation of fishing mortality values and therefore the fish stock assessments.

7.2	 Spatial and temporal variability: implications  
for fisheries

Spatial and temporal variability in condition of exploited fish resulting from the intrinsic 
and extrinsic factors described previously can influence stock biomass and also the potential 
economic benefit of fisheries, as a consequence of changes in yield and quality of fish prod-
ucts (see for example Sylvia et al., 1996; Larkin & Sylvia, 1999; Mello & Rose, 2005). 
Particularly for pelagic fish, in which lipids concentrate mostly in the edible part (muscle), 
a reduction in fat content of the fish will presumably also reduce the value of the catch for 
processing for fishmeal and/or oil.

7.2.1	 Seasonality

Seasonal biological cycles in fish condition could be used as templates for management 
strategies that promote fisheries conservation and economic and human health benefits. 
Although some studies have linked seasonal variability in fish condition with the quality and 
market value of harvested fish (see for example Mustac & Sinovcic, 2012), only a few 
attempts have been made to optimize harvesting strategies (e.g., timing of fishing) in rela-
tion to reproduction/condition cycles or to address the related economic benefits (Larkin & 
Sylvia, 1999; Mello & Rose, 2005). This would be very important in those fisheries that are 
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prosecuted on spawning fish such as cod trawl fishery in the North Atlantic or European 
hake long line fishery in the northwest Mediterranean (Lloret et al., 2012). For example, cod 
exhibits strong seasonality in weight and condition, reaching highest levels in late fall and 
lowest in spring during spawning (Mello & Rose, 2005). In this study, commercial package 
yield was lower in spring (when Fulton’s K condition factor and hepatosomatic index, 

Figure 7.1  Temporal changes in (a) commercial package yield, (b) block percent, and (c) grade A 
percent from cod (Gadus morhua) processed by National Sea Products fish plant in Arnold’s Cove, 
Newfoundland. Commercial indices defined in text. Temporal variability is expressed as the percentage 
difference between the monthly and annual mean indices. From Mello & Rose (2005).
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HSI were lower coinciding with the spawning season) and higher in fall (when K and HSI 
were at a maximum) (Fig. 7.1). Hence, an industry index based on package yield was posi-
tively and significantly correlated with K and HSI (Mello & Rose, 2005). Historically, cod 
fisheries have been prosecuted during all seasons, but simulations indicated that a fall fishery 
resulted in an 8–17% decrease in the number of cod removed from the stock while maintain-
ing the same weight-based quotas, and profiting from maximum yield and better product 
quality (Mello & Rose, 2005). Conversely, spring and summer fisheries resulted in lower 
yield (6%) and quality (5–26%) of fish products by weight. This is explained by the fact that 
the fall is the period of peak physiological condition, whereas spring and summer (spawning 
season) are the periods of weak physiological condition. Hence, Guderley et al. (1996) 
reported that wild October cod had higher condition factors, hepatosomatic indicators, white 
muscle lactate dehydrogenase activities, sarcoplasmic protein concentrations, and buffering 
capacities than June cod. In fact, in June the cod were losing mass (–0.18% body mass/day) 
whereas in early October they were increasing their mass (+0.83% body mass/day). In 
consequence, during the spawning season, cod are in their poorest somatic condition, and 
commercial quality and yield will be poorer than during the fall period.

Similar, Sylvia et al. (1996) and Larkin and Sylvia (1999) used bioeconomic models to eval-
uate the impact of seasonal quality variation of Pacific whiting Merluccius productus on optimal 
management strategies and economic benefits. These studies recommended that a delay in the 
timing of harvest until the end of the feeding season (historically more than 50% of the annual 
quota is harvested shortly after the end of the spawning season) would result in more than dou-
bling the net revenue from the fishery because of the improvement in flesh quality.

On the other hand, the evaluation of seasonal cycles in fish total lipid, particularly the 
omega-3 fatty acids, could also be important for achieving the maximum health benefits from 
a given stock because of the beneficial effects of fish omega-3 fatty acids on human health 
(reviewed by Lloret, 2010). This aspect is clearly demonstrated in studying the traditional diet 
in Mediterranean countries (so-called “Mediterranean diet”), which has been consistently 
shown to be associated with favorable health outcomes and a better quality of life (reviewed 
by Lloret, 2010). Several epidemiological and observational studies suggest that this type of 
diet traditionally followed by Mediterranean peoples may protect against chronic diseases and 
mortality, with Mediterranean nations presenting lower rates of cardiovascular disease and 
cancer in comparison with other nations (reviewed by Lloret, 2010). The long-chain omega-3 
(or n-3) fatty acids (eicosapentaenoic and docosahexaenoic fatty acids) found in seafood, 
which are important components of the Mediterranean diet, have been identified as the main 
elements responsible for this protection against cancer and cardiovascular disease in 
Mediterranean populations. In addition to the cardiovascular and cancer protective effects of 
fish consumption, fish intake in the Mediterranean has also been associated with less severe 
depressive symptoms in adults and less development of asthma and respiratory allergies in 
children. Omega-3 fatty acids also mediate the inflammatory process and influence the general 
health status of the skeletal system. However, not all studies found positive effects of omega-3 
consumption and human health. Rizos et al. (2012) found that omega-3 supplementation was 
not associated with a lower risk of all-cause mortality, cardiac death, sudden death, myocardial 
infarction, or stroke based on relative and absolute measures of association.

In this sense, fishing effort could then be shifted to the seasons when fish total lipid content 
is at a maximum, in order to obtain the greatest health benefits for the consumers. For example, 
by fishing for anchovy in late spring in Greek waters, the highest lipid content for the stock and 
the diet can be obtained (Zlatanos & Laskaridis, 2007). Also, in order to obtain the maximum 
fish oil from Sardinella aurita populations on the Tunisian coast (Mediterranean), fisheries 
should be carried out all year (lipid could reach 20% wet weight) except in the summer 



198  Condition and Health Indicators of Exploited Marine Fishes

months (lowest lipid content around 2.5% wet weight in July; Ben Rebah et al., 2010). In 
particular, the seasonal variation in n-3 fatty acid content, and the differences between 
species, should be considered for human health purposes. For example, anchovy and sardine 
show the highest n-3 fatty acid content in different months of the year (Zlatanos & Laskaridis, 
2007). However, the fat content of sardine is always (all year round) higher than that of 
anchovy, and therefore sardine appears to be the richest source of omega-3 fatty acids during 
the whole year. Therefore, the analysis of lipid and fatty acid composition of edible parts 
(muscle, roe, liver, etc.) of fish and seafood consumed is useful in assessing the benefits of 
fish consumption recommendations.

All these examples support the fact that the biological seasonality of a number of exploited 
species in temperate ecosystems may directly influence the harvested quantities and qualities of 
fish and the economics of the fishery, through seasonal variations in product yield and quality 
(Mello & Rose, 2005). Condition indicators may be useful in identifying periods of increased 
stock productivity, yield, and quality of fish products (Fig. 7.2). Therefore, the evaluation of 
seasonal cycles in fish health could also contribute to achieving the maximum sustainable yield 
from a given stock and the maximum nutritional benefits for the consumers (Lloret et al., 2012). 
Fishing during the peak physiological condition can result in a decrease in the number of individ-
uals removed from the stock while profiting from maximum yield and quality of the product.

Notwithstanding these facts, concentration of fishing effort on particular seasons may be 
neither economically feasible nor healthy for the stocks in question (if, for example, the 
peak in condition coincides with the spawning season, which is however rarely the case). 
Harvesting strategies cannot be based solely on seasonal cycles in fish condition, but must 
also consider (from a biological point of view) other factors such as temporal variation in 
abundance or the impact of fishing on spawners (for those fisheries targeting the spawning 
stock biomass).

The high degree of intraspecific seasonal variability in lipid content in the muscle obliges 
us to reflect that some species considered traditionally to be fatty may in particular seasons 
have the same lipid concentration as fish considered to have little lipid. Thus for example, in 
the fall the jack mackerel Trachurus trachurus, a pelagic species commonly considered to 

Figure 7.2  Fish exposed at a Mediterranean fishmarket. Photo by Sílvia Vila.
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have a lot of fat, has lower lipid content in the muscle than hake Merluccius merluccius has 
in the same region of the Mediterranean (Soriguer et al., 1997).

It is important to note that the amplitude of the seasonal variations in energy reserves display 
the greatest range in the temperate-boreal zone – the North Pacific and North Atlantic 
oceans – because of the large swings in temperature and resulting unevenness of the food 
supply typical of this climatic zone (Shulman & Love, 1999). In temperate zones, encompass-
ing the Mediterranean, Black, Azov and Caspian seas, the temperature regime and nutritive base 
are more stable, and so is the seasonal variability in fish condition. Further stability is shown in 
the tropical zone, where fish need not store much lipid because their spawning season is more 
extended than in temperate seas and because food supply does not much vary seasonally. 
Although this general pattern should be kept in mind for fisheries management purposes, a 
specific study must be implemented case by case because there are notable exceptions. Thus, 
for example, some tropical pelagic fish such as horse-mackerel and sardine have clearly marked 
periods of intensified lipid accumulation and expenditure (Shulman, 1974). Further, cold-water 
species such as sprat inhabiting temperate-warm waters such as the Mediterranean exhibit great 
seasonal variation in total lipid content which contrasts with the weak seasonality of the warm-
water anchovy in the same area (Shulman, 1987a).

Overall, seasonal cycles in fish health could be used to refine management strategies that 
should promote fisheries economic, conservation and human health and nutritional benefits 
by harvesting fish during periods when biological impacts are minimal and economic and 
human health returns maximal.

7.2.2	 Interannual variability

From a fisheries perspective, probably the most interesting feature is that of interannual 
variability in condition typical of many fish species, which can explain some of the interan-
nual changes in the productivity of stocks. The interannual variability in condition of cod is 
a good example. Pardoe et al. (2008) showed strong interannual and spatial variation of 
mean HSI and relative condition factor (Fig. 7.3) of immature and mature cod in shallow 
and deep waters from Iceland (Pardoe et al., 2008). Also, northeast Artic cod display strong 
interannual variability in predicted weight and liver weight at a given length (Marshall et al., 
2004). In Greenlandic waters, the annual mean condition factors of cod also showed clear 
interannual variations (Lloret & Rätz, 2002). In the northwest Mediterranean, several 
groundfish species have displayed strong interannual fluctuations in their condition (Fig. 7.4; 
Lloret et al., 2002). In the Black Sea, Shulman et al. (2005) revealed long-term variability of 
fat content of Sprattus sprattus. All these interannual changes are expected to have implica-
tions for trophic interactions, ecosystem functions, fisheries, and global protein and lipid 
supply, and therefore need to be well evaluated.

In particular, it is important to detect declining condition over years that have experienced 
a number of fish stocks, which sometimes preceded or coincided with steep decreases in the 
stock size. For example, the collapse of the northwest Atlantic cod fisheries in the early 
1990s coincided with a significant decrease in the condition of the species (Lambert & 
Dutil, 1997b). The reduced condition of cod may have led to an increase in natural mortality, 
particularly for adults that have to invest energy reserves in reproduction, thus possibly con-
tributing to the drastic decline of this stock (Lambert & Dutil, 1997a,b). In northeast Artic 
cod stock, Marshall et al. (2000) also revealed a negative trend in total lipid energy contained 
in the livers of mature females since the mid-1970s, paralleling a decline in spawner abun-
dance and suggesting that the reproductive potential of the stock was in decline since then.



Figure 7.3  Cod Gadus morhua off Iceland. Interannual (1993–2006) and spatial variation of the 
relative condition factor (Kr) of age 5 year immature and mature cod in (a) shallow (<200 m) and  
(b) deep (>200 m) water, and age 6 year immature cod in (c) shallow and (d) deep water. The 
horizontal dashed line shows the overall mean for the age present in each plot. Open circles, both sexes 
combined; triangles, mature females; asterisks, mature males. From Pardoe et al. (2008).



Figure 7.4  Interannual variations (1994–2001) in Fulton’s K condition factor of several demersal species in the western 
Mediterranean. Modified from Lloret et al. (2002).
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Similar, Golet et al. (2007) revealed a decline in condition (fat and oil content and fish 
shape) of northern bluefin tuna Thunnus thynnus in the Gulf of Maine that could diminish 
allocations to growth and gamete production and have detrimental consequences for 
rebuilding the western Atlantic population. Fish landed in the month of June 2004 arrived in 
poorer condition than they did in the early 1990s. For example, the probability of landing a 
poor-quality fish in June 1991 was 30% compared with 70% in 2004.

Males
1.20

1.15

1.10

1.05K
n

K
n

1.00

0.95

0.90
1991

1.08

1.06

1.04

1.02

1.00

0.98

0.96

0.94

92 93 94 95 96 97

Year

Year

Females

98 99 2000 01 02 03

1991 92 93 94 95 96 97 98 99 2000 01 02 03

Figure 7.5  Monthly relative condition index (Kn) of red shrimp Aristeus antennatus, 1991–2003, for 
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Use of fish condition indicators to improve stock assessment and fisheries management  203

Also, Carbonell et al. (2008) observed a decreasing trend in red shrimp male condition over 
years in the Balearic Islands (Fig. 7.5). There exists a good relationship between the condition 
of males and recruitment of red shrimp (Carbonell et al., 2008), which indicates that males play 
a key role during the whole reproductive process of the species. In this sense, the condition of 
red shrimp males could have an effect on the quantity and quality of their sperm and fertilization 
success. Hence, the observed decreasing trend in red shrimp male condition over the years in 
the Balearic Islands raised concerns about the future reproductive potential of that population.

It is also worth noting the declining trend in relative condition factor that has been 
observed in several groundfish in the Mediterranean such as European hake Merluccius 
merluccius in the Gulf of Lions and the south and central Tyrrhenian Sea, common sole 
Solea solea in the northern Adriatic, or sardine Sardina pilchardus in the Aegean Sea 
(Scientific, Technical and Economic Committee for Fisheries, Scientific, 2010).

Declines in the condition of fish have also been documented in freshwater ecosystems, for 
example in the Great Lakes lake whitefish Coregonus clupeaformis (Rennie et al., 2009). 
Although declines in the growth and condition of this population have been largely attrib-
uted to food web disruptions caused by invasive dreissenid mussels, Rennie et al. (2009) 
revealed that environmental change contributed significantly but alone was not sufficient to 
explain declines in lake whitefish growth after dreissenid establishment, whereas biological 
variables such as food availability and density dependence effects could account for the 
majority of growth and condition changes observed in this population. Also in the Great 
Lakes, an analysis of long-term (1970s to 2008) temporal trends in lipid content of 10 fish 
species suggests that, overall, lipid content significantly decreased in eight of the ten species 
in at least part of one or more Great Lakes (Neff et al., 2012).

7.2.3	 Spatial variability

A comparative analysis of the health of different populations (for the same species) could be 
used to refine the parameters used in stock assessment. Rätz and Lloret (2003) established a 
positive relationship between the estimated biological management reference points F

med
 

and the mean cod condition factors of 10 cod stocks in the North Atlantic (Fig. 7.6). F
med

 is 
one of the precautionary reference points generally accepted as a long-term measure of 
stock management in terms of safe exploitation rates that a stock can sustain with a low risk 
of collapse. This implies that the stocks in better condition can sustain higher levels of 
exploitation in the long term than stocks in poor condition (Rätz & Lloret, 2003).

7.3	 Fish condition and stock assessment  
and management

Lloret et al. (2012) reviewed the importance of fish condition studies for fish stock 
assessment and management. The authors suggested that stock assessment working 
groups, fishery agencies, and research centers in the Mediterranean and elsewhere should 
incorporate simple fish health indicators such as energy reserves and parasitic infection 
into their routine assessment and research programs, at least for the most important target 
species. Despite the fact that the links between fish health and productivity (mortality, 
recruitment and growth) cannot always be clearly demonstrated, implementing long-term 
monitoring programs of stock health could support stock assessment and sustainable 
management of profitable fisheries, particularly in stocks where data shortage prevent 
standard stock assessments, and help understand how exploited fish stocks are responding 
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to environmental and anthropogenic impacts (Lloret et al., 2012). Condition of fishery 
species should then be monitored regularly, at least during the pre-spawning period, to 
detect interannual changes in the health of fish populations that can be used to estimate 
interannual variability of natural mortality (M) for use as input in stock assessments and 
forecasts. Moreover, the monitoring of simple fish health indicators could complement 
the standard population dynamic procedures commonly used by international scientific 
and management bodies, and also as an indicator of stock status in data-poor situations 
where standard assessments (e.g., VPA or XSA) cannot be carried out. This approach will 
therefore provide a means for detecting negative trends in the health of a fish population 
over time, or anomalous poor health status at a particular time. By monitoring the condition 
of exploited fish, fisheries biologists should be able to give early warning of trouble. 
Whenever there are indications of poor health status, such as high parasitic load, low lipid 
content or lower than average relative condition index, input values of stock assessment 
models should be updated accordingly, using slower growth rates and higher natural 
mortalities than average (Lloret et al., 2012). Alternatively, if pre-spawners are found to 
be in extremely poor health during a particular year, fishery managers could adopt adaptive 
measures such as a time closure or a reduction of the fishing effort during the reproductive 
period in order to minimize the likelihood of poor recruitment resulting from the weak 
paternal stock condition. Managers should be particularly aware of declining trends in the 
average health status of individuals within a stock such as those detected in several 
groundfish in the Mediterranean including European hake Merluccius merluccius in the 
Gulf of Lions and the south and central Tyrrhenian Sea, common sole Solea solea in the 
northern Adriatic, sardine Sardina pilchardus in the Aegean Sea (Scientific, Technical and 
Economic Committee for Fisheries, 2010), red shrimp (particularly males) in the Balearic 
Islands (Carbonell et al., 2008), as well as several stocks in the North Atlantic including 
cod Gadus morhua in Newfoundland waters (Lambert & Dutil, 1997a,b) and bluefin tuna 
Thunna thynnus in the Gulf of Maine (Golet et al., 2007).
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Poor fish condition can also be a key factor impairing the recovery of overfished stocks. 
For example, after reviewing a number of studies from a spawning ground of cod in coastal 
Newfoundland, Rose et al. (2008) concluded that large fish in good condition are necessary 
for large reproductive potential in order to allow the stock to rebuild. This lesson, according 
to the authors, is applicable to the management of rebuilding stocks in general.

For migratory species (e.g., anchovy, eel, and tuna), it is also important to evaluate the 
health of individuals before the seasonal migration because migrations require a substantial 
energetic cost (Harden Jones, 1984), with the distance being linked to available lipid stores 
(Nøttestad et al., 1999). For example, if fishery managers detect lower than average condition 
(e.g., low energy reserves and high parasitism) before migration for a migratory species, the 
fishing effort directed to these species could be reduced, or the spatial distribution of the 
fishing effort may be modified. In particular, there is empirical evidence that biochemical 
assessments during critical periods of the life cycle of fish are essential in understanding the 
population dynamics of coastal upwelling ecosystems and in developing a more solid basis 
for stock management and conservation (Rosa et al., 2010).

Furthermore, the estimation of fatness can be used in certain species to improve the eval-
uation of catchability because it permits forecasting the start of the migration. For example, 
the critical level of fatness will trigger migration by the Azov anchovy at a particular range 
of water temperatures. Knowing the weather forecast and the fatness of the main stocks of 
anchovy in the Sea of Azov in September, it is possible to predict the time and character of 
the migration run through the Kerch Strait. This enables fishing boats to gather at the right 
time and place the anchovy (Shulman & Love, 1999).

Similarly, if artificial sources of light are used for catching sprats, they respond much 
better to the light if their fatness is low (Gusar et al., 1987); sated fish are no longer inter-
ested. In this case, the lipid content indicates whether the fisherman should use lights to 
attract the sprats (Gusar & Getmansev, 1985) since this method of capture works only on 
fish with low reserves. Also Azov and Black Sea anchovy form wintering stocks of different 
density depending on stored lipid content, occupying different depths and developing different 
mobility rates. Thus, knowledge of this again helps the tactics of the fishermen (Shulman & 
Love, 1999).

Finally, it is worth noting that management intervention through commercial fishing prac-
tices and other procedures may also be needed to ensure healthy fish stocks. For example, 
viscera of some Mediterranean groundfish species such as catshark Scyliorhinus canicula 
and Lophius spp. are often discarded at sea prior to reaching the fish market. In light of the 
very high parasitic load of the discarded viscera of catshark, Lloret et al. (2012) proposed 
banning offloading of fish viscera because this practice may result in heavier infections in 
fish which feed on the discarded viscera (McClelland, 2002). Finally, the potential spread 
and impact of farm-origin parasites on the survival of coastal wild fish populations must be 
taken into account (Krkosek et al., 2006).
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We have tried to show in this book the possibilities and utility of using structural, metabolic, 
and functional indicators for estimating the condition (or health) of marine fish (individuals, 
populations, stocks, and species). We have examined indicators of adaptations to environ-
ment, biodiversity, life history, abundance dynamics, behavior, and distribution. We have also 
considered interannual monitoring and interspecific and intraspecific differences. However, 
significant aspects of condition indicators related to productivity, constituents and energy 
balance (budget) have not been considered in this book, as they were examined in detail in 
the book by G.E. Shulman and R.M. Love The Biochemical Ecology of Marine Fishes 
(Advances in Marine Biology, vol. 36, 1999, Academic Press). We have focused on the 
normal condition of fish that promotes their success in the ecosystem, and on the condition 
of wild populations from an ecological and fisheries approach, paying less attention to the 
problems of marine aquaculture, the effects of pollution, fish disease, and the importance of 
fish food in human nutrition and medicine. All these important topics have been considered 
in other publications. We can cite the extensive reviews on: marine aquaculture by Jobling 
(1993), Sargent et al. (1995), Navarro et al. (1995), Tucker (1998) and Stickney (2011); fish-
eries ecology by Natochin (1988), Jenning et al. (2001), Garcia-Charton et al. (2004) and 
Karamushko (2007); marine fish deseases by Mikryakov et al. (2001); effect of pollution on 
marine fish by Adams et al. (1988), Grubinko and Leus (2001), Vannder Oost et al. (2003), 
Depledge and Galloway (2005) and Maria (2009); significance of marine fish unsaturated 
fatty acids for medicine by Ackman (1989, 2005), Li and Suzuki (2000), Arts et al. (2003), 
Masuda et al. (2003), Njinkone et al. (2002) among others. We hope that this book will make 
a contribution to marine fish ecology.

Conclusions
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abundance
dynamics, 99–102, 187–8

abiotic factors, 130–136
accumulation of see also anabolism

substance and energy, 23
active metabolism, 21, 132
adaptation for

biological evolution, 42–51
oxygen level, 140–147
temperature, 131–9

aerobic catabolism, 24 see also metabolism
ageing, after-spawning death see senescence
alternative metabolic strategies, 42–51
Ammonia coefficient AQ or O/N, 144–7
anabolism, 23 see also accumulation of energy
anaerobic catabolism, 23 see also metabolism
Anchovy Engraulis encrasicolus

abundance dynamics, 99–102, 183–8
annual cycles, 86–97
distribution, 99–102, 189–92
fatty acids, 191, 192
food and feeding, 111–22
interannual fluctuations, 98–9
life cycles, 52–107
lipids or fats, 112,127, 177, 184, 191
migrations, 106, 107, 109, 110
parasites, 18, 127
proteins, 191
temperature, 107–10, 130–136
triacylglycerols (triglycerides), 18, 127

annual cycles, 86–97
anoxia see hypoxia
anthropogenic factors, 147–55
antioxidants, 41, 49
applied recommendations, 51, 85, 97
aquaculture, 155–8
Arabian Sea animals, 140
Atkinson charge, 22, 44
Atlantic salmon Salmo salar, 55

ATP Adenosine triphosphate, 21, 23
Aurelia aurita (medusa), 180–189

bathymetric quality, 172–3
behavior, 102–7
Beroe ovata (ctenophore), 180–189
biodiversity, 43–52
biological evolution, 43–51
biomarkers, 17 see also indicators
biomass see abundance
biotic factors, 112–30
blood and form elements, 22, 45, 50
Bluemouth Helicolenus dactylopterus, 15, 

64, 69
budget (balance) of

substance and energy, 19

caloric intake see food
Capelin Mallotus vilosus, 64, 65, 72, 84, 105, 

114–22, 133, 137, 139, 164, 171–5, 185
carbohydrates, 37

glucose, 37
glycogen, 37

catabolism see metabolism
cholesterol, 46
Circadian rhythms see daily rhythms
climate change, 111, 130, 136–40, 178, 182
climatic indices (indicators), 131–9
Cod Gadus morhua, 2–6, 13, 24, 27, 32, 39–44, 

61–136, 158–78, 193–205
common sole Solea solea, 40, 123, 148, 150, 

165, 167, 203–4
competition for food, 123–4
condition factor, 18
consumer density, 123–4
consumption of

substance and energy, 111–24
contamination see pollution
coral reefs, corals, 57, 83, 121–3, 136
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Ctenophore
Beroe ovate, 180–189
Mnemiopsis leidyi, 180–189

daily rhythms, 96–7 see also circadian rhythms
death, 1, 52, 62, 66, 76, 83, 85, 96, 101–6, 140, 

197 see also elimination
DHA Docosahexaenoic acid, 26, 27, 30–31, 

50–51, 53, 75, 86, 100, 110, 164,  
189–90, 192

diet, 112–22
differentiation see also divergence
deficiency of oxygen, 140–146
digestivo-somatic, digestive index (DSI), 16
distribution of

fish, 107–10
hypoxic zones, 142

divergence, 189–93
DNA deoxyribonucleic acid, 39
dynamic of

abundance, 99–102
behavior, 42–51, 102–7
distribution pattern, 107–11

ecological niches, 42–51
ecological principles, 1–3, 206
efficiency

ecological, 42–51
functional, 42–51

egg quality, 72–7
eggs, 53–6 see also egg quality
eicosapentaenoic acid (EPA), 26, 30–31, 50, 53, 

86, 164, 189, 192
electronic portable devices, 32–7
elimination see death
embryogenesis, embryonic, eggs development, 

53–6 see also gametogenesis
embryos, 53–6
energy accumulation, 23
energy equivalent, 20, 191
energy expenditure, 19–22, 43
energy metabolism, 20, 21, 23, 25, 42, 55, 61
Engraulis encrasicolus see anchovy
environmental factors, 111–46 see also 

environmental status
environmental status, 158–94
enzymes, 42–51

activity, 132–5
erythrocytes, 49
Essential Fish Habitat (EFH), 158–9
estuary, 8, 57, 113, 116–17, 123, 135–6, 147–8, 

159, 164–9, 178

eutrophication, 187–8
evaluation of water content, 32

fat see also lipids
accumulation, 52, 62, 191
content, 113, 127–8, 179

fatmeter, 8, 9, 11, 34–7
fatness, 178
fatty acids, 26, 43–118
feeding, 20, 43–52, 111–24
food see also feeding

consumption, 49, 61, 112
density, 112
supply, 175–88

fish metabolism, 17–41
fish stock, 85, 96, 123, 154, 199, 203
fisheries management, 194–205
fishing gear, 195
fishing mortality, 195
fishing, fisheries, 150–155
food quality, 111–23
food quantity, 111–23
food consumption, 111–23
functional

activity, 42–51
efficiency, 42–51

Fulton’s K condition factor, 4
forecasting see prediction

gametogenesis, 53–6 see also embryogenesis
glucose, 37
glycogen, 37, 55 see also carbohydrates
gonadosomatic index (GSI), 77
growth, 82 see also protein growth

habitat protection, marine reserves, marine 
protected areas, 172

habitat quality, 158–94
Hake Merluccius merluccius,2, 13, 64, 72, 93, 

99, 101, 120, 125, 197–204
hemoglobin, 44
helminthes, see parasites
hepatocyte vacuoles, 27, 121
hepatosomatic, liver, relative liver index (HSI), 

12–14
hormones, 41

activity, 62, 104–6
Horse-mackerel Trachurus mediterraneus

daily rhythms, 97–8
ensyme activity, 132
fat accumulation, 62
gametogenesis, 56, 65
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Horse-mackerel Trachurus mediterraneus (cont’d )
lipid fractions, 46
oxygen deficiency, 144
protein growth, 62

hydrogen sulphide, 144
hypoxia and anoxia, 140–146

indicators (indices, biomarkers), 17–25
annual cycles, 86–96
anthropogenic changes, 175
behavior, 102–6, 108–10
biological evolution, 42–51
energy and substrate metabolic levels, 42–51
food supply, 175–88
functional activity, 42–51

inter- and intraspecies differentiations, 
189–93

oxygen deficiency adaptations, 140–147
temperature adaptations, 131–9

interannual variability, 199–203
intrannual, seasonal fluctuations, 195–9
intraspecies differentiations, 189–93
interspecies differentiations, 189–93
invasive species, 33, 136, 140, 171, 203
iodine values, 146

jellyfish see medusa
juveniles see reproduction

large scale differences, 159–64
larvae, 53–6 see also larval survival
Le Cren’s relative condition factor (Kn), 5
leucocytes, 49
life cycle see ontogenesis
life history see life history traits; ontogenesis
light, 102–5
lipids, 25

analysis, 27–37
content, 43–52, 54, 112
energy substrates, 24
fractions, 46, 55, 56
structural components, 25, 27

lipid hepatosomatic index (LHSI), 28, 33
lymphocytes, 49

maturation, 57—61
Medusa see Aurelia aurita
mesenteric, adipose, perivisceral fat index, 

15–16
metabolism, 17–41, 42–51, 52–107
migration, 96, 102–6
Mnemiopsis leidyi see ctenophore

morphometric indicators, 3–7
mortality, 63, 99–100 see also death, elimination

natural
locomotion (motor) activity, 42–51
mortality, 83–5

neutral lipids, 25, 184
NH

3
 excretion see also ammonium excretion

nitrogen/ammonium excretion, metabolism, 
38, 142

nucleic acids, 39–41 see also DNA, RNA

Omega-3, ω3, n-3, 26, 50–51, 53, 154–5, 189, 
197–8

Omega-6, ω6, n-6, 26, 53
Oncorinchus

nerka, 49
gorbusha, 75

ontogenesis, 52–110 see life cycle; life history
oocytes, 59–60, 65–6, 67–70, 99, 177
organosomatic, bioenergetic, 

morphophysiological indicators, 12–16
ovary weight, 77
overfishing, 175–88
oxidation, 19
oxygen, 19

consumption, 21,44,56, 142, 145
deficiency, 112, 140–146
O/N, 145
saturation, 45

oxygen-carrying capacity, 45 see also blood

parasites (helminthes), 18,112, 125–8
Pelagia noctiluca, 115
peroxidation, 175–88
pollution, toxicity, contamination, 147–50
phospholipids, 46
phytoplankton

biomass, concentration, 188, 189
post embryonic, larvae development, 53–6
postspawning

feeding, 93, 125
death, 63

predators, 173–5
prespawning period, 88
product quality, 195–7
production of

substance and energy, 61
proteins

content, 38, 39, 54
growth, 62

PUFA polyunsaturated fatty acids, 118, 155, 192
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Q-factor, Q-value, 188, 189

recruitment, 79–82
Red mullet Mullus barbatus, 25, 32, 34, 43, 49, 

88, 109, 113, 148–51, 164, 171
relative weight (W

r
), 6

RNA ribonucleic acid
RNA/DNA ratio, 17, 23,40–41,54–9, 79–80, 

86, 88, 94–5, 116–17, 123, 135, 148, 
152, 165–9, 176

reproduction, 52–64, 99–102
reproductive potential, 64–82
Round goby Gobius melanostomus, 55–7

its parasites, 127

Scorpion fish Scorpaena porcus
daily rhythms, 98
gametogenesis, 46
oxygen expenditure, 21
oxygen deficiency, 143–5

Sea warming, 111, 130, 137, 139, 178, 182
senescence, ageing, 61–3
sex differences, 57–61
sexual maturation, 57–61
skipped spawning, 70–72
small scale differences, 164–72
Soxhlet, 28, 30, 36–7
spawning, 89–93
specialization, 42–51
spermatocytes, spermatozoa, sperm, 59, 60, 66, 

70, 88–9, 99, 203
Sprat Sprattus sprattus

annual cycles, 86
biomass and catch, 181
density, 108

fatty acids, 192
food supply, 175–88
light attraction, 108
lipid (fat) dynamics, 177–80
relation to plankton biomass, 180
relation to temperature, 181
relation to environmental factors, 182–3

standard metabolism, 21, 43
stock assessment, 194–205
sub organism metabolism, 22
swimming

activity, 42–51
velocity, 42–51

TAGs see triacylglycerols (triglycerides)
temperature, 20

adaptation, 131–6
relation to food supply, 185

temporal variability, 195–203
tissue (sub organism) metabolism, 22, 43–52
toxicity see pollution
Trachurus mediterraneus see horse-mackerel
trawling, 111, 150–152, 172
triacylglycerols (triglycerides, TAGs), 18,  

46, 47
trophic significance of

substance and energy, 117–24

weight, mass, 20 see also weight–length 
regression

White seabream Diplodus sargus, 15, 90, 92, 93, 
168–72

wintering, 94–6

zooplankton, 111–23, 175–88
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