Федеральное государственное бюджетное учреждение науки «Институт морских биологических исследований имени А.О. Ковалевского РАН»

Тезисы IX Всероссийской научно-практической конференции молодых ученых

«Pontus Euxinus 2015»

(с международном участием) по проблемам водных экосистем, посвященной 100-летию со дня рождения д.б.н., проф., чл.-кор. АН УССР В. Н. Грезе

Севастополь 2015

При индукции формирования гематоцист происходило монотонное падение Fv/Fm и абсолютных значений интенсивности флуоресценции хлорофилла (вследствие его деградации). Однако при этом переход сопровождался кратковременным (около 50 часов) резким ростом $N(Q_A)$ (с 500 ± 50 при росте в нормальных условиях до 800±70 при индукции перехода), из чего можно сделать вывод о более интенсивной работе ЭТЦ пластид. Для данного периода была характерна активация процессов нефотохимического тушения флуоресценции хлорофилла (оцениваемого при помощи параметра NPQ=(Fm - Fm')/Fm', где Fm и Fm'— интенсивность флуоресценции хлорофилла при действии насыщающей вспышки света (3000 мкмоль ФАР/м²/c) после темновой адаптации и после актиничному свету (800 мкмоль адаптации соответственно). NPO возрастал с 0.15±0.05 до 0.6±0.05. Более длительное культивирование клеток при неблагоприятных условиях приводило к постепенному снижению NPQ и N(Q_A) до нулевых свидетельствовать что может 0 прекращении значений, функционирования фотосинтетического аппарата. Можно думать, наблюдаемый стрессе кратковременный что при рост фотосинтетической необходим для обеспечения активности энергией клеток при перестройке метаболизма в начальной фазе гематоцист. энергозависимые образования В этот период тушение, механизмы. такие как нефотохимическое существенный вклад в защиту клеток от фотоповреждения. У сформированных гематоцист H. pluvialis вклад NPQ снижается, и фотоповреждения переходит функция зашиты ОТ фотопротекторным механизмам, менее зависимым от постоянного притока энергии, таким как экранирование избыточного света астаксантином.

Челебиева Э.С., Минюк Г.С., Чубчикова И.Н.

ФГБУН «Институт морских биологических исследований имени А.О. Ковалевского РАН», 299011 г. Севастополь, просп. Нахимова, 2 elina.chelebieva@gmail.com

ОСОБЕННОСТИ ВТОРИЧНОГО КАРОТИНОГЕНЕЗА У ЗЕЛЁНОЙ МИКРОВОДОРОСЛИ PSEUDOSPONGIOCOCCUM PROTOCOCCOIDES GROMOV & MAMKAEVA 1974

Работа выполнена в рамках исследований по скринингу потенциальных источников микроводорослей как зелёных высокоценных природных кетокаротиноидов (ККар). Объектом исследования служила зелёная микроводоросль Pseudospongiococcum protococcoides Gromov & Mamkaeva 1974, полученная из коллекции культур водорослей Биологического Института Санкт-Петербургского университета (штамм CALU-221). С момента первого описания Б.В. Громовым и К.А. Мамкаевой в 1974 г. и по настоящее время вид остается единственным представителем рода Pseudospongiococcum. Штамм отсутствует в других мировых альгологических коллекциях. Оранжево-красная агаризованных окраска стареющих культур данные предварительного эксперимента показали, что вид характеризуется выраженной способностью к вторичному каротиногенезу (ВКРГ) (Чубчикова и др., 2009). В связи с этим, основными задачами верификация работы были таксономического P. protococcoides в системе зелёных водорослей и исследование характеристик физиолого-биохимических микроводоросли условиях экспериментально индуцированного ВКРГ.

Исследование морфометрических характеристик CALU-221 показало, что его морфотип соответствует авторскому первоописанию (Громов, Мамкаева, 1974). Молодые эллипсоидные клетки (длина 6-12 мкм, ширина 4-8 мкм) с возрастом приобретали сферическую форму (диаметр 12-19 мкм). Большинство клеток имели толстую клеточную оболочку, с двойным контуром, один, пиреноида, губчатый сетчатый хлоропласт. реже два или Молекулярно-генетический нуклеотидной анализ рРНК последовательности **18S** что генотип показал, P. protococcoides уникален И не идентичен ни одному секвенированных видов водорослей, представленных в базе данных NCBI. Во всех вариантах филогенетических деревьев штамм CALU-221 попадал в группу близких клад, соответствующих семейству Scenedesmaceae, а в её пределах – в кладу «Coelastrella».

Для исследования физиолого-биохимических характеристик водоросль выращивали по схеме двухстадийной накопительной культуры (Минюк и др., 2010). Индукцию ВКРГ в контроле осуществляли путём создания острого дефицита питания и 20-кратного положительного градиента освещённости, в опытном варианте дополнительно вносили 0,05 М ацетата натрия (NaAc). Характерной особенностью стресс-реакции *P. protococcoides* являлось активное деление и увеличение численности клеток ~ в 3 раза в контроле к концу «красной» стадии. В присутствии NaAc

отмечена существенная гибель клеток. Средний объём зрелых спор превышал объём вегетативных клеток в 1,8-2,2 раза (268 мкм³ в контроле и 338 мкм³ в присутствии ацетата, соответственно). Содержание суммарных каротиноидов (Кар) в клетках водоросли не не увеличилось, но даже уменьшилось вследствие превышения скорости деградации первичных каротиноидов над скоростью биосинтеза ККар. Средняя продуктивность культур *P. protococcoides* по Кар составила $0.06 - 0.07 \text{ мг·л}^{-1} \cdot \text{сут}^{-1}$, причем стимулирующего влияния ацетата на накопление вторичных Кар, отмеченного у других сценедесмальных видов, не выявлено. Фракционный состав каротиноидов характеризовался набором интермедиатов биосинтеза астаксантина (АСТ), из них около 50 % от Кар составила сумма всех форм АСТ, 12-17 % приходилось кантаксантин. Специфической на P. protococcoides является высокое содержание (23,6-31,8 % от Кар) свободных форм астаксантина и адониксантина. Значительная доля первичных ксантофиллов (17,2-21,6 % от Кар) в составе Кар может указывать на то, что процесс ВКРГ в клетках не завершен.

Черепанова Т.А., Горбачева Т.Т.

ФГБУН Институт проблем промышленной экологии Севера КНЦ РАН, 184209 Мурманская обл., г. Апатиты, ул. Академгородок, д. 14a mamahoma@inbox.ru

МНОГОЛЕТНЯЯ ДИНАМИКА СТОКА РАСТВОРЕННОГО ЖЕЛЕЗА С ПОЧВ ВОДОСБОРА БЕЛОГО МОРЯ (ПО ДАННЫМ ЛИЗИМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ)

Одной из основных особенностей донных отложений Белого моря, в частности, акватории Кандалакшского залива, является образование железо-марганцевых конкреций (Розанов и др., 2006), способствующих сорбции широкого ряда элементов-загрязнителей. Исходя из того факта, что речной сток является источником поступления большинства элементов в море, и более 70% Fe может переноситься речными водами в соединении с растворимыми сомнения формами гумуса. не вызывает необходимость исследования поступления Fe с почв территории водосбора. Реки водосбора Белого моря имеют преимущественно снеговое питание, и в период снеготаяния почвы исследуемого региона находятся в промерзшем состоянии, а их основной слой на протяжении