МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ
"АЗОВСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА"

(ФГБНУ «АЗНИИРХ»)

СОВРЕМЕННЫЕ ВОПРОСЫ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ВОДНЫХ И НАЗЕМНЫХ ЭКОСИСТЕМ

МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ МОЛОДЫХ УЧЕНЫХ

> Г. РОСТОВ-НА-ДОНУ 26-29 ОКТЯБРЯ 2015 Г.

Полученные результаты свидетельствуют об адекватности выбранных технологий выращивания молоди сазана навеской более 15 грамм с последующим выпуском в естественный водоем в целях воспроизводства рыбных запасов. Осуществление искусственного воспроизводства требует обеспечения предприятий производителями, которых катастрофически не хватает. Дефицит производителей можно будет компенсировать формированием ремонтно-маточного стада сазана в искусственных условиях.

Для сохранения и пополнения запасов сазана как одного из ценных видов рыб Волго-каспийского региона необходимо, поддерживать их численность за счет искусственного воспроизводства на рыбоводных предприятиях области путем перехода на более высокий стандарт и увеличением количества выпускаемой молоди сазана.

Болтачева Н.А.

Институт морских биологических исследований им. А.О. Ковалевского РАН, Севастополь nboltacheva@mail.ru

СООБЩЕСТВО ANADARA KAGOSHIMENSIS В ФЕОДОСИЙСКОМ ЗАЛИВЕ (ЧЁРНОЕ МОРЕ)

Сформировавшееся сообщество анадары было обнаружено в Чёрном море в 1990 г. в р-не Гудаутской банки (Кавказское побережье) [9]. Оно обитало на глубине 10-30 м, в нём было зарегистрировано 19 видов, средняя биомасса макрозообентоса – 170 г·м⁻². Дальнейшие исследования бентоса вдоль Кавказского побережья показали, что ценозообразующей популяция анадары стала лишь на юге российской части этого побережья [8]. В 1992–2003 гг. формирование сообщества анадары отмечено в районе Дунайско-Днестровского междуречья на глубине 6–11 м [6].

На крымском шельфе плотных поселений анадары обнаружено не было, хотя как редкий данный вид отмечен в ряде сообществ в этом регионе. Крымский шельф неоднороден, и в середине прошлого века В.А. Водяницкий на основании анализа физико-географических, гидрологических и биологических особенностей вдоль черноморской прибрежной зоны Крыма выделил пять естественных районов: Каркинитский, Евпаторийско-Севастопольский, Южнобережный, Феодосийский Керченский [2]. Наименее исследован Феодосийский район, данных о зообентосе в его акватории до последних лет практически не было.

В декабре 2006 г. в результате комплексной гидробиологической съёмки впервые были получены данные по распределению макрозообентоса в Феодосийском заливе. Бентос собран на полигоне с глубинами преимущественно 28–34 м. Грунты на обследованном участке – в основном алевритово-пелитовые илы с небольшой примесью песка. Выполнен анализ 44 проб макрозообентоса. Дополнительно в 2013 г. в р-не Феодосийского порта на глубинах 10–17 м собраны пробы с 10 станций. Макрозообентос в обеих экспедициях собирали с помощью дночерпателя Петерсена (S=0,04 м²), промывали на судне через систему сит с наименьшим диаметром ячеи 1 мм, а затем обрабатывали в лаборатории по общепринятым методикам.

На пяти станциях в 2006 г. и на одной станции в 2013 г. был обнаружен Anadara kagoshimensis. Данный вид был доминирующим по биомассе, что позволило выделить по В.П. Воробьёву [3] на этих станциях сообщество А. kagoshimensis. На четырёх станциях в 2006 г. и на пяти — в 2013 г. по биомассе преобладал двустворчатый моллюск Pitar rudis. Доминирование питара или анадары наблюдается на станциях, расположенных в центре залива на илистых грунтах, на глубинах 10–32 м. Было выдвинуто предположение, что ранее (до вселения анадары в Чёрное море) в Феодосийском заливе обитало сообщество Pitar rudis или P. rudis — Upogebia [1]. В настоящее время, видимо, происходит распространение анадары в заливе. Проведено сравнение качественного состава и количественных показателей макрозообентоса в сообществе с преобладанием A. kagoshimensis и — с преобладанием P. rudis.

В анализируемых материалах идентифицировано 43 вида макрозообентоса (табл. 1). Присутствуют представители 8 типов животного царства. Из них наиболее многочисленны Mollusca — 16 видов, Polychaeta — 17 видов, Crustacea — 4 вида. Меньшим числом видов представлены Cnidaria — 2 вида, Phoronida — 1 вид. Представители Nemertea и Oligochaeta до вида не идентифицированы. В сообществе питара зарегистрировано 36 видов, в сообществе анадары — 21 вид. Соотношения количества видов крупных таксономических групп в этих сообществах сходны, есть различия лишь в группе многощетинковых червей. Необычно мала относительная представленность ракообразных в макрозообентосе Феодосийского залива, что не характерно для фауны Крымского региона в целом, в которой на долю этой группы приходится около 25% видов. Сравнение видового состава этих сообществ показало, что различие их довольно велико — индекс общности фаун Чекановского-Съёренсена составляет 0,49.

Численность макрозообентоса в сообществе Рітаг колебалась в пределах 67–1550 экз. m^{-2} , в среднем составляя 536 экз. m^{-2} . Биомасса менялась от 5 до 240,7 Γ · m^{-2} , средняя — 54,7 Γ · m^{-2} . При этом средние показатели $P.\ rudis = 147$ экз. m^{-2} и 41,1 Γ · m^{-2} . Полученные данные по биомассе близки к аналогичным показателям для сообщества $P.\ rudis$ в 60–е годы XX ст. у побережья Кавказа — 33 Γ · m^{-2} [4] и в Новороссийской бухте — 47 Γ · m^{-2} [5].

Таблица 1 Видовой состав макрозообентоса в сообществах A. kagoshimensis и P. rudis в Феодосийском заливе

Таксоны	Сообщество Anadara	Сообщество Pitar	
CNIDARIA (Actiniaria)			
Actinothoe clavata (Ilmoni, 1830)	+		
Edwardsia claparedii (Panceri, 1869)		+	
NEMERTEA g.sp.	+	+	
ANNELIDA			
Aonides paucibranchiata Southern, 1914		+	
Aricidea claudiae Laubier, 1967	+	+	
Exogone gemmifera Pagenstecher, 1862	+	+	
Fabricia sabella (Ehrenberg, 1837)	+		
Glycera alba (O. F. Müller, 1776)		+	
Goniada bobretzkii Annenkova, 1929		+	
Harmothoe imbricata (Linnaeus, 1767)		+	
Heteromastus filiformis (Claparède, 1864)	+	+	
Melinna palmata Grube, 1870		+	
Micronephtys stammeri (Augener, 1932)	+	+	
Neanthes succinea (Frey et Leuckart, 1847)	+	+	
Nephtys hombergii Savigny, 1818	+	+	
Polygordius neapolitanus Fraipont, 1887		+	
Prionospio cirrifera Wiren, 1883		+	
Protodorvillea kefersteini (McIntosh, 1869)		+	
Spio filicornis (Müller, 1776)		+	
Spionidae g.sp.		+	
Oligochaeta g.sp.	+	+	
CRUSTACEA	,		
Ampelisca diadema (Costa, 1853)	+	+	
Diogenes pugilator (Roux, 1829)	*	+	
Iphinoe elisae Bacescu, 1950	+		
Orchestia sp.		+	
MOLLUSCA			
Abra nitida milachewichi Nevesskaja, 1963		+	
Abra sp.	+		
Acanthocardia paucicostata (Sowerby, 1859)	+		
Anadara kagoshimensis (Tokunaga, 1906)	+		
Bittium reticulatum (Da Costa, 1799)	,	+	
Chamelea gallina (Linnaeus, 1758)	+	+	
Cyclope donovani Risso, 1826		+	
Donax trunculus Linnaeus, 1758		+	
Gibbula adriatica (Philippi, 1844)		+	
Gouldia minima (Montagu, 1803)	+	+	
Hydrobia acuta (Draparnaud, 1805)	'	+	
Lucinella divaricata (Linnaeus, 1758)		+	
Moerella sp.	+	'	
Mytilaster lineatus (Gmelin, 1790)		+	
Nassarius reticulatus (Linnaeus, 1758)	+	+	
Parvicardium exiguum (Gmelin, 1790)	'	+	
Pitar rudis (Poli, 1791)	+	+	
PHORONIDA	'	'	
Phoronis sp.	+	+	
1 norons sp.	<u>'</u>	'	

В настоящее время - у кавказских берегов на глубине 20-30 м это сообщество также имеет сходные с нашими средние показатели – 600 экз. м⁻² и 66 г⋅м-2 [8]. В керченском предпроливье на глубине 22–32 м зарегистрировано сообщесто *P. rudis* с более высокой средней биомассой − 81 г·м⁻², однако доля руководящего вида в нём меньше, средняя биомасса питара $-26~ {\rm r\cdot m^2}$ [7]. В сообществе Anadara численность макрозообентоса колебалась в пределах 222–2175 экз. м⁻², в среднем составляя 1031 экз. м⁻². Биомасса менялась от 70 до 390,4 г·м⁻², средняя – 156,3 г·м⁻². Средняя численность A. kagoshimensis - 16 экз. M^{-2} , биомасса - 122 г M^{-2} (максимальная $-374 \text{ г}\cdot\text{м}^{-2}$). Доля доминанта составляла 78% общей биомассы и 1,6% общей численности макрозообентоса. Аналогичные средние показатели для сообщества анадары у берегов Кавказа существенно выше – 2130 экз. м-2 и 600 г·м⁻², при этом особенно высока численность A. kagoshimensis в сообществе – 1160 экз. м⁻² (54% общей численности) [8]. Средняя биомасса анадары здесь также выше, чем в Феодосийском заливе – 450 г⋅м-2, однако вклад в сообщество – 75% общей биомассы – такой же, как в сообществе Феодосийского залива.

Сравнение разнообразия сообществ провели с помощью индексов биоразнообразия (табл. 2). Значения их для разных станций варьируют, однако средние значения индекса Шеннона по численности и индекса разнообразия Симпсона (1/D) для сообщества питара выше, чем для сообщества анадары. Выравненность видов (по индексу Пиелу) также более высокая в сообществе питара. Рассчитанные значения индексов доминирования Симпсона (D) и Берджер-Паркер (d) свидетельствуют о более высоком уровне доминирования в сообществе анадары по сравнению с сообществом питара (рис. 1). Следует указать, что для бентоса у Кавказского побережья также отмечено большее разнообразие сообщества Pitar по сравнению с сообществом Anadara [8].

Построены графики сравнительного развития численности и биомассы (АВС графики), по виду которых можно судить о наличии изменений во взаимоотношении k- и г-стратегов в сообществе [10]. На большинстве станций, где доминирует Pitar график биомассы лежит выше графика численности, что свидетельствует об относительно нормальном развитии сообщества. Почти на всех станциях, где преобладает Anadara графики численности и биомассы пересекаются, что свидетельствует о том, что сообщество находится в «нарушенном» или переходном состоянии.

Таким образом, обнаружено новое для Крымского побережья сообщество с доминированием вселенца *Anadara kagoshimensis*, населяющее отдельные участки Феодосийского залива. 1. Новое сообщество отличается от нативного сообщества *Pitar rudis* в Феодосийском заливе (индекс общности фаун Съёренсена -0.49). Его количественные показатели выше,

чем таковые сообщества *P. rudis*, однако разнообразие и выравненность ниже. 2. Количественные характеристики сообщества *P. rudis* близки к по-казателям этого же сообщества из других районов Чёрного моря, а структура, в основном, соответствует структуре ненарушенного сообщества. 3. Число зарегистрированных видов, количественное развитие сообщества *A. kagoshimensis* ниже, чем аналогичные показатели для такого же сообщества у берегов Кавказа, его структура соответствует структуре сообщества в переходном состоянии.

Таблица 2 Индексы разнообразия Шеннона (Н'), Симпсона (1/D), Пиелу (е), доминирования Берджер-Паркер (d) и Симпсона (D), видового богатства Маргалефа (\mathbf{D}_{MG}) для сообществ бентоса Феодосийского залива

1 MG2							
	Min		Max		Среднее значение		
Индексы	Сообщество		Сообщество		Сообщество		
	Anadara	Pitar	Anadara	Pitar	Anadara	Pitar	
Индексы разнообразия							
Н'(числ-сть)	0,81	1,79	2,37	3,02	1,76	2,34	
Н' (биомасса)	0,25	0,83	2,24	2,13	1,43	1,46	
e	0,25	0,52	0,77	0,91	0,54	0,68	
1/D	1,26	2,07	4,12	7,07	2,47	4,02	
Индексы доминирования							
d	0,31	0,22	0,89	0,68	0,63	0,46	
D	0,24	0,14	0,80	0,48	0,48	0,31	
D _{MG} (Base10)	0,62	0,99	1,27	1,11	0,93	1,06	

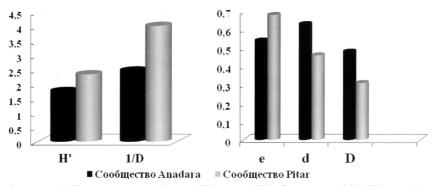


Рисунок 1. Индексы разнообразия Шеннона (H'), Симпсона (1/D), Пиелу (e), доминирования Берджер-Паркер (d) и Симпсона (D) для двух сообществ

Список литературы

- 1. Болтачева Н. А. Макрозообентос Феодосийского залива / Н. А. Болтачева, Е. А. Колесникова, С. А. Мазлумян // Промысловые биоресурсы Чёрного и Азовского морей. Ред. В. Н. Еремеев, А. В. Гаевская, Г. Е. Шульман, Ю. А. Загородняя. Севастополь: ЭКОСИ-Гидрофизика, 2011. С. 163—169.
- 2. Водяницкий В. А. О естественноисторическом районировании Чёрного моря и в частности у берегов Крыма / В. А. Водяницкий // Тр. Севастоп. биол. станции. 1949. 7. С. 249—255.
- 3. Воробьёв В. П. Бентос Азовского моря / В. П. Воробьёв // Труды Азово-Черноморского научно-исследовательского морского рыбного хозяйства и океанографии. — Симферополь: Крымиздат, 1949. — Вып. 13. — С. 5–195.
- 4. Киселева М. И. Бентос рыхлых грунтов Черного моря / М. И. Киселева Киев: Наук. думка, 1981. 163 с.
- 5. Миловидова Н. Ю. Донные биоценозы Новороссийской бухты / Н. Ю. Миловидова // Распределение бентоса и биология донных животных в южных морях. Киев: Наук. думка, 1966. С. 90–101.
- 6. Синегуб И. А. Макрозообентос. Донные сообщества. 1984–2002 гг. / И. А. Синегуб // Северо-Западная часть Чёрного моря: биология и экология. Киев: Наук. думка, 2006. С. 276–286.
- 7. Терентьев А. С. Сообщество двустворчатого моллюска *Pitar rudis*, образовавшееся в результате разрушения донных биоценозов Керченского предпроливья Черного моря / А. С. Терентьев // Труды южного научн.-исслед. института морск. рыбн. хоз-ва и окенографии. 2011. 49. С. 108–122.
- 8. Чикина М. В. Макрозообентос рыхлых грунтов Северо-Кавказского побережья Чёрного моря: пространственная структура и многолетняя динамика: автореф. дисс.... канд. биол. Наук / М. В. Чикина Москва, 2009. 25 с.
- 9. Zolotarev P. N. Changes in the macrobenthic communities of the *Gudauta Oyster* Bank / P. N. Zolotarev, A. S. Terentyev // Okeanologiya. 2012. 52, № 2. P. 251–257.
- 10. Warwick R. M. Practical measures of marine biodiversity based on relateness of species / R. M. Warwick, K. R. Clarke // Oceonogr. Mar. Biol. Ann. Rev. 2001.– 39. P. 207–231.

Бортников Е.С., Стрижакова Т.В., Шевкоплясова Н.Н.

Азовский научно-исследовательский институт рыбного хозяйства (ФГБНУ «АзНИИРХ»), Ростов-на-Дону

Bortnikov 1991@bk.ru

ДАННЫЕ ПО ЗАРАЖЕННОСТИ ПРОМЫСЛОВЫХ РЫБ AЗОВСКОГО БАССЕЙНА HEMATOДОЙ EUSTRONGYLIDES EXCISUS

Введение

Нематода *Eustrongylides excisus* Jägerskiöld, 1909 – это крупный червь красноватого цвета, паразитирующий в личиночной стадии в полости тела