МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ
"АЗОВСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА"

(ФГБНУ «АЗНИИРХ»)

СОВРЕМЕННЫЕ ВОПРОСЫ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА ВОДНЫХ И НАЗЕМНЫХ ЭКОСИСТЕМ

МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ МОЛОДЫХ УЧЕНЫХ

> Г. РОСТОВ-НА-ДОНУ 26-29 ОКТЯБРЯ 2015 Г.

- 3. Светашева С.К., Егоров В.Н., Гулин М.Б., Жерко Н.В. Трансформация физико- химических форм ртути и её распределение в аэробной и анаэробной зонах Черного моря // Молисмология Черного моря. К.: Наук. думка. 1992. С. 108—122.
- 4. Унифицированные методы мониторинга фонового загрязнения природной среды. М.: Гидрометеоиздат. 1986. 180 с.

Стецюк А.П., Плотицына О.В., Поповичев В.Н. ФГБУН Институт морских биологических исследований им. А.О. Ковалевского РАН, Севастополь

Alex-ra-777@mail.ru

ИССЛЕДОВАНИЕ СОДЕРЖАНИЯ РТУТИ В СЕВАСТОПОЛЬСКИХ БУХТАХ

Одним из наиболее опасных загрязнителей морских экосистем является ртуть, обладающая высокой токсичностью и способностью накапливаться в морских организмах и донных отложениях. Содержание её в воде и водных объектах зависит от ряда климатических, гидрологических, геохимических факторов, а также от техногенного пресса. В настоящее время изучение географии распределения ртути и оценка её воздействия на морские экосистемы, в частности на прибрежные зоны Севастопольского региона, является актуальной задачей.

Исследования экологических аспектов загрязнения ртутью севастопольских бухт, проводимые сотрудниками отдела радиационной и химической биологии ИнБЮМ НАН Украины с конца 80–х годов прошлого века, приобрели уже статус многолетнего мониторинга [2–4, 6–8]. Так, по результатам исследований в 1988–1990 гг. было установлено [2], что концентрация ртути в поверхностных водах некоторых севастопольских бухт превышала ПДК, равное 100 нг·л⁻¹ [5]. В 2001 г. наиболее высокое содержание ртути, более чем на порядок выше фонового уровня, было выявлено в донных отложениях бухты Южной [4]. Съёмками, проведёнными в мае 2012 и 2013 гг., зафиксировано улучшение состояния севастопольских бухт в отношении загрязнения их поверхностных вод ртутью [6].

В настоящей работе отображены свежие данные по изучению содержания ртути в севастопольских бухтах: Севастопольская, Северная, Мартынова Карантинная, Стрелецкая, Круглая, Камышовая, Казачья.

Материал и методика

Для определения ртути был использован метод беспламенной атомноабсорбционной спектрофотометрии [1]. Измерения концентраций ртути в пробах воды проводили на анализаторе ртути «Юлия-2» классическим вариантом: с аэрацией паров восстановленной ртути и измерением поглощения излучения с длиной волны 253.7 нм.

По методам мониторинга фонового загрязнения природной среды подготавливали пробы воды к анализу [9]. В данных пробах определяли растворённую и взвешенную формы ртути, используя для разделения соответствующих фракций взвеси мембранные фильтры с размером пор 0.45 мкм. В морской воде ртуть присутствует в различных физико-химических формах, поэтому для нахождения её общего содержания все формы ртути переводились в растворённую. В качестве окислителя использовали перманганат калия. Ионную ртуть восстанавливали двухлористым оловом до металлической ртути и улавливали в поглотительный раствор.

Относительная ошибка измерения ртути в пробах воды составила 12%.

Результаты и обсуждение

Исследованиями, проведёнными нами в 2012 г. на предмет ртутного загрязнения воды севастопольских бухт: Севастопольская, Северная, Мартынова, Карантинная, Стрелецкая, Круглая, Камышовая, Казачья, установлено, что содержание ртути в поверхностной воде перечисленных бухт не превышало ПДК. Однако, в феврале 2013 г. на реперной станции (44° 36.944' с.ш.; 33° 30.183' в.д.) в искусственной бухте у радиобиологического корпуса (РБК) Института Морских Биологических Исследований РАН, расположенной между Карантинной и Севастопольской бухтами, зафиксирована концентрация общей ртути в поверхностной воде (659.4 нг·л⁻¹) в 6.6 раз превышающая ПДК и в этой связи был осуществлён посезонный мониторинг этой бухты (табл. 1, рис. 1). В апреле 2013 г. содержание ртути в ней снизилось до значения 164.5 нг·л⁻¹, а в мае до 10.9 нг·л⁻¹ [6]. В дальнейшем наши наблюдения смогли установить закономерность, что повышенные концентрации ртути в воде, как правило, приурочены к аварийным выпускам хозяйственно-бытовых вод из расположенной недалеко сточной трубы городской канализации.

Таблица 1 Дата отбора проб, концентрация ртути и температура воды на реперной станции в искусственной бухте у РБК ИМБИ РАН

№	Дата отбора	Hg _{раств} , нг л⁻¹	Hg _{взв} , нг л ⁻¹	Hg _{обш} , нг л ⁻¹	Т _{воды} , °С
1	10.08.2012	10.0	4.2	14.2	26.0
2	26.12.2012	66.0	4.8	70.8	10.0
3	25.02.2013	644.0	15.4	659.4	8.2
4	15.04.2013	158.0	6.5	164.5	11.0
5	13.05.2013	6.0	4.9	10.9	17.5
6	26.06.2013	69.0	13.5	82.5	24.0
7	27.08.2013	56.0	1.8	57.8	24.8
8	26.11.2013	34.0	1.5	35.5	12.4
9	14.05.2014	140.0	12.5	152.5	16.0
10	27.08.2014	485.0	64.9	549.9	25.0

Как видно из таблицы и рисунка 1, определяющее значение пришлось на растворённую форму ртути, обладающей слабой миграционной способностью. Миграция ртути осуществляется в основном во взвешенном состоянии, за счёт её высокой сорбционной способности и комплексообразования [8].

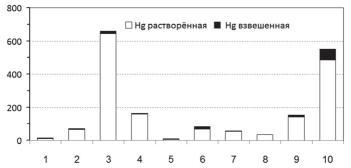


Рисунок 1. Содержание растворённой (${\rm Hg}_{\rm pacts}$, нг ${\rm n}^{-1}$) и взвешенной (${\rm Hg}_{\rm взв}$, нг ${\rm n}^{-1}$) форм ртути в поверхностной воде искусственной бухты у РБК ИМБИ РАН

Параллельно нами определялись значения гидрохимических параметров и на основе полученных данных был проведён корреляционный анализ, однако, существенной взаимосвязи между ними и содержанием разных форм ртути в воде выявлено не было. Вместе с тем известно, что умеренно-высокие температуры оказывают стимулирующий эффект на комплексообразование ртути [8]. В этом контексте указанную закономерность отражают результаты наших исследований: весьма слабой корреляционной зависимостью между значением вклада взвешенной формы ртути в общую ($\mathrm{Hg}_{_{\mathrm{Взв}}}/\mathrm{Hg}_{_{\mathrm{общ}}}$ %) и температурой воды ($\mathrm{T}_{_{\mathrm{R}}}$, °C), что иллюстрирует рисунок 2.

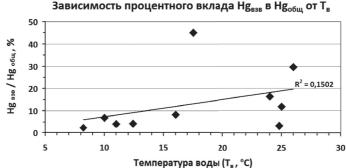


Рисунок 2. Зависимость процентного вклада взвешенной формы ртути в общую ($Hg_{\text{в.т.в.}}/Hg_{\text{общ}}$ %) от температуры воды ($T_{\text{в.}}$, °C)

С июня по сентябрь 2014 г. было проведено исследование проб воды на содержание ртути в Камышовой (44° 39.120' с.ш.; 33° 19,341' в.д.), Мартыновой (44° 37.477' с.ш.; 33° 30.775' в.д.) и Инкерманской (напротив ГРЭС – 44° 37.052' с.ш.; 33° 34.438' в.д.) бухтах. Самая высокая концентрация ртути была зафиксирована в июле и связана, по-видимому, с повышенной антропогенной нагрузкой, обусловленной как хозяйственно-бытовой деятельностью, так и рекреационным фактором. В августе концентрация начала снижаться, а в сентябре содержание ртути уже не превышало ПДК.

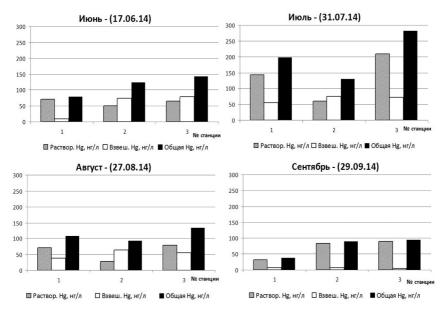


Рисунок 3. Содержание растворённой ($\mathbf{Hg}_{\mathrm{pacrs}}$, нг π^{-1}), взвешенной ($\mathbf{Hg}_{\mathrm{взв}}$, нг π^{-1}) и общей ($\mathbf{Hg}_{\mathrm{06m.}}$, нг π^{-1}) форм ртути в поверхностной воде бухт: 1 — Камышовая; 2 — Мартынова; 3 — Инкерманская

Заключение

По результатам мониторинга севастопольских бухт можно сказать, что содержание ртути в воде зависит в основном от антропогенно-техногенного пресса на прибрежную акваторию и от сезона, что соответствует литературным данным о зависимости скорости ртутного образования в водных системах от температуры [8].

Пробы воды для исследований отбирали сотрудники отдела радиационной и химической биологии ИМБИ РАН Поповичев В.Н. и Пейдус Д.А., которым авторы выражают свою признательность.

Список литературы

- 1. Игошин А.М., Богусевич Л.Н. Беспламенный атомно-абсорбционный метод определения ртути в воде // Гидрохимические материалы. 1969. Т. 47. С. 150–156.
- 2. Костова С.К., Егоров В.Н., Поповичев В.Н. Многолетние исследования загрязнения ртутью Севастопольских бухт (Черное море) // Экология моря. 2001. 56.—С.99–104.
- 3. Костова С.К., Поповичев В.Н. Распределение ртути в акватории черноморского побережья Крыма // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа: Сб. науч. тр. Севастополь. 2002. Вып.1(6).— С.118–127.
- 4. Костова С.К. Распределение ртути в поверхностном слое донных отложений Севастопольской бухты (Чёрное море) // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа: Сб. науч. тр. Севастополь. 2005. Вып.12. С. 273–279.
- 5. Перечень предельно допустимых концентраций и ориентировочно безопасных уровней воздействия вредных веществ для воды рыбохозяйственных водоемов. М.: Медикор. 1995. 220 с.
- 6. Плотицына О.В., Стецюк А.П., Поповичев В.Н. Распределение ртути в воде соленых озер северо-западной части Крыма, Черного моря и Севастопольских бухт // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа: Сб. науч. тр. Севастополь. 2014. Вып.28. С. 225–230.
- 7. Светашева С.К., Егоров В.Н., Гулин М.Б., Жерко Н.В. Трансформация физико-химических форм ртути и её распределение в аэробной и анаэробной зонах Черного моря // Молисмология Черного моря. К.: Наук. думка. 1992. С. 108–122.
- 8. Ульрих С.М., Тантон Т.В., Абдрашитова С.А. Ртуть в природных водных объектах: обзор фактов, влияющих на метилирование // Environmental Science and Technology. 2001. №31(3). С. 241–293.
- 9. Унифицированные методы мониторинга фонового загрязнения природной среды. М.: Гидрометеоиздат. 1986. 180 с.

Стольникова Н.В., Зайцев В.Ф.

ФГБОУ ВПО «Астраханский государственный технический университет», Астрахань

natashka stolnik@mail.ru

СУТОЧНЫЙ РИТМ И СПЕКТР ПИТАНИЯ ГРЕБНЕВИКА MNEMIOPSIS LEIDYI В КАСПИЙСКОМ МОРЕ

Проблема инвазии гребневика в акватории южных морей произошла стихийно и привела к разрушительным последствиям для экосистем. Особое опасение вызывает высокая адаптивная способность данного организма к новой среде обитания настолько различным по температурным и пищевым условиям относительно уже заселенных им ранее районов. На данный момент ареал желетелого хищника *Mnemiopsis leidyi* включа-