ФОРМИРОВАНИЕ БИООБРАСТАНИЯ В СТРУКТУРИРОВАННОМ ПРОСТРАНСТВЕ ИСКУССТВЕННЫХ РИФОВЫХ КОНСТРУКЦИЙ

Biofouling formation in the artificial reef structured space

Дата

2017

Название журнала

Номер ISSN

Название тома

Издатель

Marine Biological Journal

Аннотация

В статье обсуждаются вопросы, связанные с возможностью управления биообрастанием через структуру искусственных рифовых конструкций (ИРК), и вопросы пространственной организации растительных пологов, формируемых на ИРК, что является актуальным при решении задач культивирования гидробионтов на твёрдых субстратах. ИРК представляет собой частокол вертикальных структур цилиндрической формы (di = 0,33 см, li = 20 см) на горизонтально расположенной пластине (So = a1 ∙ a2 = 900 см²). Частокол охватывает пространство (Vг = 0,018 м³), одна часть которого занята вертикальными структурами (∑Vi = Vi ∙ n, где n ― общее количество осевых структур на горизонтальной поверхности модуля), а другая свободна от них (Vf = Vг – ∑Vi). Задавались три варианта плотности расположения вертикальных структур (n/So): 544, 3956 и 10 678 экз∙м-2 — и, соответственно, три варианта величины концентрации их площади поверхности в границах объёма ИРК (Cs = (∑Si) / Vг): 0,056, 0,295 и 1,106 см-1. В течение 43 суток (c 27 мая по 9 июля 2014 г.) ИРК экспонировались в прибрежной акватории бухты Севастополя (Чёрное море) на глубине 2 м. Температура воды в море варьировала в пределах +23,3…+25,6 °C. Пробы отбирали каждые 6–8 суток. В составе биообрастания по массе преобладали диатомовые водоросли, присутствовали проростки многоклеточных водорослей, из животных встречались гидроиды, мшанки, спирорбисы, личинки балянусов. На 7-е сутки экспозиции на поверхности ИРК при редком (544 экз.∙см-2) и плотном (10 678 экз.∙см-2) расположении структур идентифицирован 51 вид диатомовых водорослей, из которых только 15 видов (каждый по отдельности) вносят заметный (> 5 %) вклад в общую численность (ni, %) и биомассу (Wi, %) сообщества на отдельно взятых участках вертикальных структур. К ним относятся: Achnanthes longipes, Amphora hyalina, Berkeleya rutilans, Cylindrotheca closterium, Entomoneis paludosa, Haslea ostrearia, Licmophora abbreviata, L. hastata, Neosynedra provincialis, Nitzschia sigma, N. tenuirostris, Parlibellus delognei, Pleurosigma elongatum, Proboscidea insecta, Trachyneis aspera. Значения коэффициентов Сёренсена — Чекановского (Ksc = 0,7) и Стугрена — Радулеску (Psr = -0,077) указывают на очень близкое сходство систематического состава сравниваемых сообществ. На рассматриваемом отрезке времени выделяются четыре характерных этапа в изменении величины плотности обрастания вертикальных структур (W/Si, где W — сухая биомасса обрастания, Si — площадь поверхности осевой структуры). Условно первый этап завершается седьмым днём наблюдения, и к этому моменту на верхушках структур, независимо от плотности их расположения, создаётся примерно одинаковая плотность обрастания (0,51–0,91 мг (сухой массы) ∙ см-2), а в серединной части ИРК она сильно различается (0,03–0,57 мг (сухой массы) ∙ см-2). Второй этап (7–21-е сутки) характеризуется низкими величинами скорости изменения биомассы на единицу обрастаемой поверхности и меняющимся вектором её направленности (0,003–0,08, 0,25, -0,17 мг (сухой массы) ∙ сут-1 ∙ см-2) и относительно невысокими значениями W/Si (0,36–2,23 мг (сухой массы) ∙ см-2). Третий этап отличается быстрым увеличением плотности обрастания (0,30–0,75 мг (сухой массы) ∙ сут-1 ∙ см-2). Максимум W/Si (3,09–9,07 мг (сухой массы) ∙ см-2) достигается на 29 и 36-е сутки экспозиции. Четвёртый этап проявляется снижением W/Si и не может рассматриваться как закономерный: он является следствием действия внешних факторов среды (подвижности воды). Рассмотрено вертикальное распределение сухой биомассы биообрастаний (W/Si) вдоль осевых структур при разной плотности их расположения на 7, 14, 21, 29, 36 и 43-и сутки эксперимента. Общая картина вертикального распределения W/Si на 29 и 43-и сутки была сходной: с увеличением плотности размещения вертикальных структур максимум биомассы обрастателей смещается в сторону верхней границы ИРК. На конструкциях с редким расположением структур максимум биомассы отмечен в серединной части растительного полога, при частом (3956 экз.∙м-2) расположении основная часть биомассы (83,5–73,8 %) сосредоточена в верхней половине растительного полога, а при плотном — в верхнем двухсантиметровом слое (63,9–79,3 %). Рассмотрена связь величин концентрации сухой массы биообрастания в объёме обитаемого пространства (Cw = (∑Wi) / Vf) и концентрации физической поверхности ИРК (Cs) по отношению к верхнему двухсантиметровому слою ИРК (1) и по отношению ко всему объёму рифовой конструкции (2) при высоте вертикальных структур в 20 см, на 29-е сутки эксперимента ((1): Cw = -0,232 + 7,136Cs, R² = 0,99; (2): Cw = 0,084 + 2,652Cs, R² = 0,93). Показано, что при высоте вертикальных структур в 20 см с увеличением значений Cs усиливается экранирующее действие как со стороны структур конструкции, так и со стороны биообрастаний, что приводит к частичному световому и биогенному лимитированию роста биообрастателей и, следовательно, к «недобору» биомассы в соответствующем объёме пространства конструкции.

Аннотация (alternative)

The paper focuses on the possibility of using artificial reef structures (ARS) to control biofouling and focuses on the spatial organization of vegetative canopies formed in the ARS, which is relevant for solving the problems of cultivation of hydrobionts on solid substrates. ARS is a kind of stockade made up of cylindrical vertical structures (di = 0.33 cm, li = 20 cm) that are placed on a horizontal plate (So = a1 ∙ a2 = 900 cm²). The stockade covers space (Vg = 0.018 m³) partly occupied by vertical structures (ΣVi = Vi ∙ n, where n is the total number of axial structures on the module horizontal surface), while the rest of it remains free (Vf = Vг – ∑Vi). Three possible densities were considered for the arrangement of the said vertical structures (n/So), and namely: 544, 3956 and 10 678 pieces per m², while the concentration of their surface area within the ARS (Cs = (∑Si) / Vг) was set as 0.056, 0.295 and 1.106 per cm. For 43 days (from May 27 to July 9 2014), the ARSs were kept in the offshore strip of the Sevastopol Bay (Black Sea) at the depth of 2 m. The water temperature in the sea ranged from 23.3 to 25.6 °C. Samples were taken every 6–8 days. In the composition of the biofouling, diatom algae were found to be predominating in the mass, while also present were sprouts of multicellular algae and, of animals, hydroids, bryozoans, spirogbis, and larvae of balanuses were also observed. On the 7th day of exposure, 51 species of diatom algae were found on the surface of the ARS with a loose (544 pieces per cm²) and dense (10 678 pieces per cm²) structures arrangement, with only 15 species making a significant (> 5 %) contribution to the total number (ni, %) and biomass (Wi, %) of the community in certain sections of vertical structures (Achnanthes longipes, Amphora hyalina, Berkeleya rutilans, Cylindrotheca closterium, Entomoneis paludosa, Haslea ostrearia, Licmophora abbreviata, L. hastata, Neosynedra provincialis, Nitzschia sigma, N. tenuirostris, Parlibellus delognei, Pleurosigma elongatum, Proboscidea insecta, Trachyneis aspera). The values of the Sorensen – Chekanovskii (Ksc = 0.7) and Stugren – Radulescu (Psr = -0.077) coefficients indicate a very close similarity between the systematic composition of the communities being compared. As the fouling density value changes in vertical structures (W/Si) during the period under consideration, four characteristic stages can be distinguished. The first, by convention, is completed on the 7th day of observation, and an approximately equal fouling density (0.51–0.91 mg (dry weight) per cm²) is found to have been created by this time on the tops of the structures, regardless of the density of their structures, and it differs significantly (0.03–0.57 mg (dry weight) per cm²) in the middle part of the ARS. The second stage (7–21st days) is characterized by low rates of biomass increase per unit of the surface colonized (0.003–0.08, 0.25, -0.17 mg (dry weight) · day-1 · cm-2) and by relatively low values W/Si (0.36–2.23 mg (dry weight) per cm²). The third stage is characterized by a rapid increase in the fouling density (0.30–0.75 mg (dry weight) · day-1 · cm-2). The maximum W/Si (3.09–9.07 mg (dry weight) per cm²) is reached on the 29th and 36th days of exposure. The fourth, final stage is characterized by a decrease in W/Si, this being the period of partial “disintegration” of the previously formed fouling community. The paper analyzes in detail the vertical distribution of the dry biofouling biomass (W/Si) along the axial structures with different density of their arrangement on the 7th, 14th, 21st, 29th, 36th and 43rd days of the experiment. The general picture of the vertical distribution of W/Si on the 29th and 43rd days was found to be similar. With the increase in the density of vertical structures arrangement, the maximum fouling biomass shifts towards the upper boundary of the ARS. In loosely arranged structures, the maximum biomass is located in the middle part of the canopy, while in not so densely arranged structures (3956 pieces per cm²), the bulk of the biomass (83.5–73.8 %) is concentrated in the upper half of the canopy, while in densely arranged structures, in the upper 2-cm layer (63.9–79.3 %). The paper also considers the relationship between the biofouling dry mass concentration throughout the inhabited space (Cw = (∑Wi) / Vf) and the concentration of the ARS physical surface with respect to the upper ARS (1) layer and the entire volume of the reef structure (2) in 20-cm high structures on the 29th day of the experiment ((1): Cw = -0.232 + 7.136Cs, R² = 0.99; (2): Cw = 0.084 + 2.652Cs, R² = 0.93). It shows that in 20-cm vertical structures an increase in the value of Cs is accompanied by the increased screening effect produced by both structure elements and biofouling – a process which leads to the growth of biofouling agents being partially checked by the insufficient inflow of light and biogenic elements and, accordingly, to a “shortage” of biomass in the given volume of the structure space.

Ключевые слова

биообрастание, фитообрастание, колонизация, фитоценоз, диатомовые водоросли, искусственные рифы, растительный полог, обитаемое пространство, сообщества твёрдых субстратов

Библиографическое описание

Морской биологический журнал. - 2017. - Т. 2, № 3 https://repository.marine-research.ru/handle/299011/2675

DOI